Читаем Разведка далеких планет полностью

Для выработки сигналов, управляющих формой корректирующего зеркала, обычно анализируется мгновенное изображение яркой одиночной звезды. В качестве приемника используется анализатор волнового фронта, размещенный у выходного зрачка телескопа. Сквозь матрицу из множества небольших линз свет звезды попадает в ПЗС-камеру, сигналы которой оцифровываются и анализируются компьютером. Управляющая программа, изменяя форму корректирующего зеркала, добивается того, чтобы изображение звезды имело идеально «точечный» вид. По сути, в этом-то и заключается главная идея астрономической системы адаптивной оптики: нам заранее известно, каким в идеальном телескопе должно быть изображение звезды! Звезда должна выглядеть точкой (точнее, маленьким дифракционным кружочком). Искривив мягкое зеркало так, чтобы изображение звезды стало точкой, мы сделаем четкими и изображения всех соседних с ней объектов!

Эксперименты с системами адаптивной оптики начались в конце 1980-х гг., а к середине 1990-х гг. уже были получены весьма обнадеживающие результаты. Одним из первых телескопов, на которых тестировалась система компенсации атмосферных искажений, в 1992 г. стал уже знакомый нам старенький 60-дюймовый «Хейл» обсерватории Маунт-Вилсон. 69-канальная система адаптивной оптики позволила повысить его угловое разрешение с 0,5–1,0'' до 0,07''. С 2000 г. практически на всех крупных телескопах используются такие системы, позволяющие довести угловую разрешающую способность телескопа до его физического (дифракционного) предела. В конце ноября 2001 г. система адаптивной оптики начала работать на 8,2-метровом телескопе «Йепун» (VLT, Чили). Это существенно улучшило качество наблюдаемой картины: теперь угловой диаметр изображений звезд составляет 0,07'' в спектральном диапазоне К (2,2 мкм) и 0,04'' в диапазоне J (1,2 мкм).

Искусственная звезда. Для быстрого анализа изображения в системе адаптивной оптики используется опорная звезда, которая должна быть весьма яркой, поскольку ее свет делится анализатором волнового фронта на сотни каналов и в каждом из них регистрируется с частотой около 1 кГц. К тому же яркая опорная звезда должна располагаться на небе вблизи изучаемого объекта. Однако в поле зрения телескопа далеко не всегда встречаются подходящие звезды: ярких звезд на небе не так много, поэтому до недавних пор системам адаптивной оптики были доступны наблюдения лишь 1 % небосвода – маленькие площадки вокруг ярких звезд. Чтобы снять это ограничение, было предложено использовать искусственный «маячок», который располагался бы вблизи изучаемого объекта и помогал зондировать атмосферу.

Рис. 3.36. Сравнение изображений звезды, полученных без применения и с использованием системы адаптивной оптики.

Эксперименты показали, что для работы активной оптики очень удобно при помощи специального лазера создавать в верхних слоях атмосферы искусственную звезду (Laser Guide Star, LGS) – маленькое яркое пятно, постоянно присутствующее в поле зрения телескопа. Как правило, для этого используется лазер непрерывного действия с выходной мощностью в несколько ватт, настроенный на частоту резонансной линии натрия (например, на линию D2 Na). Его луч фокусируется в атмосфере на высоте около 90 км, там, где присутствует естественный слой воздуха, обогащенный натрием, свечение которого как раз и возбуждается лазерным лучом. Физический размер светящейся области составляет около 1 м, что с расстояния в 100 км воспринимается как объект с угловым диаметром около 1''. Например, в системе ALFA (Adaptive optics with Laser For Astronomy), разработанной в Институте внеземной физики и Институте астрономии Общества им. Макса Планка (Германия) и пущенной в опытную эксплуатацию в 1998 г., аргоновый лазер накачки мощностью 25 Вт возбуждает лазер на красителях выходной мощностью 4,25 Вт, который и дает излучение в линии D2 натрия. Это устройство создает искусственную звезду с визуальным блеском 9-10™. Правда, появление в атмосфере аэрозоля или наблюдение на больших зенитных расстояниях существенно снижают блеск и качество искусственной звезды.

Поскольку луч мощного лазера способен ночью ослепить пилота самолета, астрономы принимают меры безопасности. Видеокамера с полем зрения 20° следит через тот же телескоп за областью неба вокруг искусственной звезды и при появлении любого объекта выдает команду на заслонку, перекрывающую лазерный луч.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука