Планеты – холодные тела; сами они не излучают свет, а лишь отражают лучи своего солнца. Поэтому планету, расположенную вдали от звезды, практически невозможно обнаружить в оптическом диапазоне. Молодую планету можно заметить по ее собственному излучению в инфракрасном диапазоне. Но после кратковременного периода гравитационного разогрева и быстрого остывания тепловое излучение далекой планеты тоже становится незаметным. Правда, планеты с мощной атмосферой хорошо отражают свет. Но даже если планета движется вблизи звезды и хорошо освещена ее лучами, то для далекого наблюдателя она трудноразличима из-за гораздо более яркого блеска самой звезды.
Предположим, что наблюдатель находится у ближайшей к нам звезды а Кентавра и смотрит в телескоп в сторону Солнечной системы. Тогда Солнце будет сиять для него так же ярко, как звезда Вега на земном небосводе. А блеск наших планет окажется для альфа-кентаврца очень слабым и к тому же сильно зависящим от ориентации в его сторону дневного полушария планеты. В табл. 6.2 приведены самые «выгодные» значения углового расстояния планет от Солнца и их оптического блеска. Понятно, что одновременно они реализоваться не могут: при максимальном угловом расстоянии планеты от Солнца ее яркость будет примерно вдвое меньше максимальной.
Солнечная система при наблюдении с расстояния а Кентавра
Как видим, лидером по обнаружимости является Юпитер, а за ним идут Венера, Сатурн и Земля. Вообще говоря, крупнейшие современные телескопы без особого труда могли бы заметить такие тусклые объекты, если бы на небе рядом с ними не было чрезвычайно яркой звезды. Но для далекого наблюдателя угловое расстояние планет от Солнца очень мало, что делает задачу их обнаружения чрезвычайно сложной.
Тем не менее астрономы сейчас создают приборы, которые решат эту задачу Например, изображение яркой звезды можно закрыть экраном, чтобы ее свет не мешал изучать находящуюся рядом планету Такой прибор называют звездным коронографом; по конструкции он похож на солнечный внезатменный коронограф Лио. Другой метод предполагает «гашение» света звезды за счет эффекта интерференции ее световых лучей, собранных двумя или несколькими расположенными рядом телескопами – так называемым «звездным интерферометром». Поскольку звезда и расположенная рядом с ней планета наблюдаются в чуть-чуть разных направлениях, с помощью звездного интерферометра (изменяя расстояние между телескопами или правильно выбирая момент наблюдения) можно добиться почти полного гашения света звезды и одновременно усиления света планеты. Оба описанных прибора – коронограф и интерферометр – очень чувствительны к влиянию земной атмосферы, поэтому для успешной работы, видимо, придется доставить их на околоземную орбиту.
Косвенный метод обнаружения экзопланет – метод прохождений, или транзитов – основан на наблюдении яркости звезды, на фоне диска которой перемещается планета. Только для наблюдателя, расположенного в плоскости орбиты экзопланеты, она время от времени должна затмевать свою звезду. Если это звезда типа Солнца, а экзопланета – типа Юпитера, диаметр которого в 10 раз меньше солнечного, то в результате такого затмения яркость звезды понизится на 1 %. Это можно заметить с помощью наземного телескопа. Но экзопланета земного размера закроет только 0,01 % поверхности звезды, а столь малое снижение яркости трудно измерить сквозь неспокойную земную атмосферу; для этого нужен космический телескоп.
Вторая проблема этого метода в том, что доля экзопланет, орбитальная плоскость которых точно ориентирована на Землю, весьма невелика. К тому же затмение длится несколько часов, а интервал между затмениями – годы. Тем не менее прохождения экзопланет перед звездами уже неоднократно наблюдались.
Существует также весьма экзотический метод поиска одиночных планет, свободно «дрейфующих» в межзвездном пространстве. Такое тело можно обнаружить по эффекту гравитационной линзы, возникающему в тот момент, когда невидимая планета проходит на фоне далекой звезды. Своим гравитационным полем планета искажает ход световых лучей, идущих от звезды к Земле; подобно обычной линзе, она концентрирует свет и увеличивает яркость звезды для земного наблюдателя. Это очень трудоемкий метод поиска экзопланет, требующий длительного наблюдения за яркостью тысяч и даже миллионов звезд. Но автоматизация астрономических наблюдений уже позволяет его использовать.