#define __NR_restart_syscall 0
#define __NR_exit 1
#define __NR_fork 2
#define __NR_read 3
#define __NR_write 4
#define __NR_open 5
...
#define __NR_mq_unlink 278
#define __NR_mq_timedsend 279
#define __NR_mq_timedreceive 280
#define __NR_mq_notify 281
#define __NR_mq_getsetattr 282
В конец файла добавляется следующая строка.
#define __NR_foo 283
В конце концов необходимо реализовать сам системный вызов foo()
. Так как системный вызов должен быть вкомпилорован в образ ядра во всех конфигурациях, мы его поместим в файл kernel/sys.c
. Код необходимо размещать в наиболее подходящем файле. Например, если функция относится к планированию выполнения процессов, то ее необходимо помещать в файл sched.c
.
/*
* sys_foo - всеми любимый системный вызов.
*
* Возвращает размер стека ядра процесса
*/
asmlinkage long sys_foo(void) {
return THREAD_SIZE;
}
Это все! Загрузите новое ядро. Теперь из пространства пользователя можно вызвать системную функцию foo()
.
Доступ к системным вызовам из пространства пользователя
В большинстве случаев системные вызовы поддерживаются библиотекой функций языка С. Пользовательские приложения могут получать прототипы функций из стандартных заголовочных файлов и компоновать программы с библиотекой С для использования вашего системного вызова (или библиотечной функции, которая вызывает ваш системный вызов). Однако если вы только что написали системный вызов, то маловероятно, что библиотека glibc
уже его поддерживает!
К счастью, ОС Linux предоставляет набор макросов-оболочек для доступа к системным вызовам. Они позволяют установить содержимое регистров и выполнить машинную инструкцию int $0x80
. Эти макросы имеют имя syscall
, где
— число от нуля до шести. Это число соответствует числу параметров, которые должны передаваться в системный вызов, так как макросу необходима информация о том, сколько ожидается параметров, и соответственно, нужно записать эти параметры в регистры процессора. Например, рассмотрим системный вызов open()
, который определен следующим образом.
long open(const char *filename, int flags, int mode)
Макрос для вызова этой системной функции будет выглядеть так.
#define NR_open 5
_syscall3(long, NR_open, const char*, filename, int, flags, int, mode);
После этого приложение может просто вызывать функцию open()
.
Каждый макрос принимает 2 + 2*n
параметров. Первый параметр соответствует типу возвращаемого значения системного вызова. Второй параметр — имя системного вызова. После этого следуют тип и имя каждого параметра в том же порядке, что и у системного вызова. Постоянная NR_open
, которая определена в файле
, — это номер системного вызова. В функцию на языке программирования С такой вызов превращается с помощью вставок на языке ассемблера, которые выполняют рассмотренные в предыдущем разделе шаги. Значения аргументов помещаются в соответствующие регистры, и выполняется программное прерывание, которое перехватывается в режиме ядра. Вставка данного макроса в приложение — это все, что необходимо для выполнения системного вызова open()
.
Напишем макрос, который позволяет вызвать нашу замечательную системную функцию, и соответствующий код, который позволяет этот вызов протестировать.
#define __NR_foo 283
__syscall0()(long, foo)
int main() {
long stack_size;
stack_size = foo();
printf("Размер стека ядра равен %ld\n" , stack_size);
return 0;
}
Почему не нужно создавать системные вызовы
Новый системный вызов легко реализовать, тем не менее это необходимо делать только тогда, когда ничего другого не остается. Часто, для того чтобы обеспечить новый системный вызов, существуют более подходящие варианты. Давайте рассмотрим некоторые "за" и "против" и возможные варианты.
Для создания нового интерфейса в виде системного вызова могут быть следующие "за".
• Системные вызовы просто реализовать и легко использовать.
• Производительность системных вызовов в операционной системе Linux очень высока.
Возможные "против".
• Необходимо получить номер системного вызова, который должен быть официально назначен в период работы над разрабатываемыми сериями ядер.