Обычно полезно знать, в какой версии исходных кодов ядра появился дефект. Если известно, что дефект появился в версии 2.4.18, но его не было в версии 2.4.17, то сразу появляется ясная картина изменений, которые привели к появлению ошибки. Исправление ошибки сводится к обратным изменениям, или другим исправлениям измененного кода.
Однако, чаще оказывается неизвестным в какой версии появился дефект. Известно, что проблема проявляется в
Для того, чтобы начать, необходима четко повторяемая проблема. Желательно, чтобы проблема проявлялась сразу же после загрузки системы. Далее необходимо гарантированно работающее ядро. Вероятно, это ядро уже известно. Например, может оказаться, что пару месяцев назад ядро работало нормально, поэтому стоит взять ядро того времени. Если это не помогает, то можно воспользоваться еще более старой версией. Такой поиск ядра без дефекта должен быть не сложным, если, конечно, дефект не существовал всегда.
Далее, необходимо ядро, в котором гарантированно есть дефект. Для облегчения поиска следует воспользоваться наиболее ранней версией ядра, в которой есть дефект. После этого начинается поиск исполняемого образа, в котором появилась ошибка. Рассмотрим пример. Допустим, что последнее ядро, в котором не было ошибки — 2.4.11, а последнее с ошибкой — 2.4.20. Начинаем с версии ядра, которая находится посредине — 2.4.15. Проверяем версию 2.4.15 на наличие ошибки. Если версия 2.4.15 работает, значит ошибка появилась в более поздней версии. Следует попробовать версию между 2.4.15 и 2.4.20, скажем версию 2.4.17. С другой стороны, если версия 2.4.15 не работает, то тогда ясно, что ошибка появилась в более ранней версии, и следует попробовать версию, скажем 2.4.13. И так далее.
В конце концов проблема сужается до двух ядер — одно с дефектом, а другое — без. В таком случае есть ясная картина изменений, которые привели к проблеме.
Такой подход избавляет от необходимости проверять ядра всех версий!
Если ничто не помогает — обратитесь к сообществу
Возможно, вы уже испробовали все, что знали. Вы просидели за клавиатурой несчетное количество часов, и даже дней, а решение все еще не найдено. Если проблема в основном ядре Linux, то всегда можно обратиться за помощью к людям из сообщества разработчиков ядра.
Короткое, но достаточно детальное описание проблемы вместе с вашими находками, посланное в список рассылки разработчиков ядра по электронной почте, может помочь отыскать решение. В конце концов, дефектов никто не любит.
Глава 20, "Заплаты, разработка и сообщество" специально посвящена сообществу разработчиков ядра и его основному форуму — списку рассылки разработчиков ядра Linux (Linux Kernel Mail List, LKML).
Глава 19
Переносимость
Linux — переносимая операционная система, которая поддерживает большое количество различных компьютерных аппаратных платформ.
Некоторые операционные системы специально разрабатываются с учетом требований переносимости как главного свойства. По возможности минимальное количество кода выполняется зависимым от аппаратуры. Разработка на языке ассемблера сводится к минимуму, а интерфейсы и свойства выполняются принципиально общими и абстрактными, чтобы иметь возможность работать на различных аппаратных платформах. Очевидным преимуществом в этом случае является легкость поддержки новой аппаратной платформы. В некоторых случаях простые операционные системы с высокой переносимостью могут быть нормированы на новую аппаратную платформу только путем изменения нескольких сотен строк специфичного кода. Недостаток такого подхода состоит в том, что не используются специфические свойства аппаратной платформы и код не может быть в ручную оптимизирован под конкретную машину. Переносимость ставится выше оптимальности. Примером операционных систем с высокой переносимостью могут быть Minix, OpenBSD и многие исследовательские системы.