Рассмотрим те типы операций и данных, которые связаны со страничным кэшем. Страничный кэш в основном пополняется при выполнении страничных операций ввода-вывода, таких как read()
и write()
. Страничные операции ввода-вывода выполняются с целыми страницами памяти, в которых хранятся данные, что соответствует операциям с более, чем одним дисковым блоком. В страничном кэше данные файлов хранятся порциями. Размер одной порции равен одной странице памяти.
Операции блочного ввода-вывода работают в каждый отдельный момент времени с одним дисковым блоком. Часто встречающаяся операция блочного ввода-вывода — это чтение и запись файловых индексов. Ядро предоставляет функцию bread()
, которая выполняет низкоуровневое чтение одного блока с диска. С помощью буферов дисковые блоки отображаются на связанные с ними страницы памяти и благодаря этому сохраняются в страничном кэше.
Например, при первом открытии в текстовом редакторе дискового файла с исходным кодом, данные считываются с диска и записываются в память. При редактировании файла считывается вес больше данных в страницы памяти. Когда этот файл позже начинают компилировать, то ядро может считывать соответствующие страницы памяти из дискового кэша. Нет необходимости снова считывать данные с диска. Поскольку пользователи склонны к тому, чтобы периодически работать с одними и теми же файлами, страничный кэш уменьшает необходимость выполнения большого количества дисковых операций.
Страничный кэш
Как следует из названия, страничный кэш (page cache) — это кэш страниц; памяти. Соответствующие страницы памяти получаются в результате чтения и записи обычных файлов на файловых системах, специальных файлов блочных устройств и файлов, отображаемых в память. Таким образом, в страничном кэше содержатся страницы памяти, полностью заполненные данными из файлов, к которым только что производился доступ. Перед выполнением операции страничного ввода-вывода, как, например, read()
[84], ядро проверяет, есть ли те данные, которые нужно считать, в страничном кэше. Если данные находятся в кэше, то ядро может быстро возвратить требуемую страницу памяти.
Объект address_space
Физическая страница памяти может содержать данные из нескольких несмежных физических дисковых блоков[85].
Проверка наличия определенных данных в страничном кэше может быть затруднена, если смежные блоки принадлежат совершенно разным страницам памяти. Невозможно проиндексировать данные в страничном кэше, используя только имя устройства и номер блока, что было бы наиболее простым решением.
Более того, страничный кэш ядра Linux является хранилищем данных достаточно общего характера в отношении того, какие страницы памяти в нем могут кэшироваться. Первоначально страничный кэш был предложен в операционной системе System V (SVR 4) для кэширования только данных из файловых систем. Следовательно, для управления страничным кэшем операционной системы SVR 4 использовался эквивалент файлового объекта, который назывался struct vnode
. Кэш операционной системы Linux разрабатывался с целью кэширования
Для получения необходимой общности в страничном кэше операционной системы Linux используется структура address_space
(адресное пространство), которая позволяет идентифицировать страницы памяти, находящиеся в кэше. Эта структура определена в файле
следующим образом.
struct address_space {
struct inode *host; /* файловый индекс, которому
принадлежит объект */
struct radix_tree_root page_tree; /* базисное дерево
всех страниц */
spinlock_t tree_lock; /* блокировка для защиты
поля page_tree */
unsigned int i_mmap_wrltable; /* количество областей
памяти
с флагом VM_SHARED */
struct prio_tree_root i_mmap; /* список всех отображений */
struct list_head i_mmap_nonlinear; /* список областей
памяти с флагом VM_NONLINEAR */
spinlock_t i_mmap_lock; /* блокировка поля i_mmap */
atomic_t truncate_count; /* счетчик запросов
truncate */