* захватываться.
* Это гарантирует, что не возникнет состояния взаимоблокировки,
* но все-таки лучше не переходить в состояние ожидания,
* если необходимо гарантировать защиту данных!
*/
unlock_kernel();
Когда эта блокировка захвачена, происходит запрещение преемптивности. Для ядер, скомпилированных под однопроцессорную машину, код BKL на самом деле не выполняет никаких блокировок. В табл. 9.8 приведен полный список функций работы с BKL.
Таблица 9.8. Функции работы с большой блокировкой ядра
Функция | Описание |
---|---|
lock_kernel() | Захватить блокировку BKL |
unlock_kernel() | Освободить блокировку BKL |
kernel_locked() | Возвратить ненулевое значение, если блокировка захвачена, и нуль- в противном случае |
Одна из самых главных проблем, связанных с большой блокировкой ядра, — как определить, что защищается с помощью данной блокировки. Часто блокировка BKL ассоциируется с кодом (например, она "синхронизирует вызовы функции foo()
"), а не с данными ("защита структуры foo
"). Это приводит к тому, что заменить BKL обычными спин-блокировками бывает сложно, потому что нелегко определить, что же все-таки необходимо блокировать. На самом деле, подобная замена еще более сложна, так как необходимо учитывать все взаимоотношения между всеми участками кода, которые используют эту блокировку.
Секвентные блокировки
Секвентная блокировка (seq lock) — это новый тип блокировки, который появился в ядрах серии 2.6. Эти блокировки предоставляют очень простой механизм чтения и записи совместно используемых данных. Работа таких блокировок основана на счетчике последовательности событий. Перед записью рассматриваемых данных захватывается спин-блокировка, и значение счетчика увеличивается на единицу. После записи данных значение счетчика снова увеличивается на единицу, и спин-блокировка освобождается, давая возможность записи другим потокам. Перед чтением и после чтения данных проверяется значение счетчика. Если два полученных значения одинаковы, то во время чтения данных новый акт записи не начинался, Если к тому же оба эти значения четные, то к моменту начала чтения акт записи был закончен (при захвате блокировки на запись значение счетчика становится нечетным, а перед освобождением — снова четным, так как изначальное значение счетчика равно нулю).
Определение секвентной блокировки можно записать следующим образом.
seqlock_t mr_seq_lock = SEQLOCK_UNLOCKED;
Участок кода, который осуществляет запись, может выглядеть следующим образом.
write_seqlock(&mr_seq_lock);
/* блокировка захвачена на запись ... */
write_sequnlock(&mr_seq_lock);
Это выглядит, как работа с обычной спин-блокировкой. Необычность появляется в коде чтения, который несколько отличается от ранее рассмотренных.
unsigned long seq;
do {
seq = read_seqbegin(&mr_seq_lock);
/* здесь нужно читать данные ... */
} while (read_seqretry(&mr_seq_lock, seq));
Секвентные блокировки полезны для обеспечения очень быстрого доступа к данным в случае, когда применяется много потоков чтения и мало потоков записи. Кроме того, при использовании этого типа блокировок потоки записи получают более высокий приоритет перед потоками чтения. Блокировка записи всегда будет успешно захвачена, если нет других потоков записи. Потоки чтения никак не влияют на захват блокировки записи, в противоположность тому, что имеет место для спин-блокировок и семафоров чтения-записи. Более того, потоки, которые ожидают на запись, будут вызывать постоянные повторения цикла чтения (как в показанном примере) до тех пор, пока не останется ни одного потока, удерживающего блокировку записи во время чтения данных.
Средства запрещения преемптивности