Также нужно уточнить, что двоичная система счисления (база два) оперирует двумя возможными символами, 0 или 1, а десятичная система (база десять) — десятью возможными символами (0, 1, 2,..., 9). Число в каждой системе счисления представляет собой комбинацию символов. Так как двоичная система является внутренним языком компьютеров, преобразование чисел из одной системы в другую является обычной практикой. Для перевода двоичного числа в десятичный вид необходимо представить это число как сумму произведений последовательных степеней основания двоичной системы счисления (2) на соответствующие цифры в разрядах двоичного числа справа налево. Так, если в двоичной системе перед нами число 1011, мы действуем следующим образом: первый знак 1 справа умножаем на 2° (нулевая степень любого числа равна единице), следующий знак 1 умножаем на 20 знак 0 — на 22, знак 1 — на 23. Теперь вычислим сумму полученного выражения 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20. Результат будет эквивалентным десятичным числом, в нашем случае — 11. На практике если двоичные числа состоят из четырех разрядов, результаты, полученные с помощью описанного метода, можно занести в таблицу.
Двоичная
0000
0001
0010
0011
0100
0101
0110
0111
Десятичная
0
1
2
3
4
5
6
7
Двоичная
1000
1001
1010
1011
1100
1101
1110
НИ
Десятичная
8
9
10
11
12
13
14
15
Как мы можем представить число в кубитах?
Например, нам нужно представить число 9 (схема 2). В двоичной системе его эквивалентом будет 1001, так как вычислив 1 · 23 + 0 · 22 + 0 · 21 + 1 -20 (помним, что 20 = 1), получим 9.
Следовательно, |9> соответствует 11001>. А число 8? |8) соответствует 11000>. Это означает, что квантовый компьютер представляет числа 8 и 9 так же, как и обычный.
Однако он также может представлять и выполнять операции суперпозиции, например с |8> + |9>.
РИС. 2
Теперь, когда мы попытаемся выяснить экспериментальными методами, в каком состоянии суперпозиции находится кубит из всех возможных состояний между 0 и 1, проявляется принцип интерференции, состоящий в том, что, как говорят квантовые физики, происходит коллапс кубита. То есть кубит превращается в классический бит, теряет состояние суперпозиции и принимает значение, равное 0 или 1. Это означает, что квантовый компьютер может выполнять операции согласно правилам квантовой механики, чем и объясняется его потенциал, при этом результат будет представлен пользователю, как и в обычном компьютере.
Еще одно явление, имеющее место в квантовых компьютерах, — квантовая запутанность частиц. Согласно этому свойству, можно получить пару фотонов, находящихся в запутанном состоянии, так что изменение одного фотона повлияет на другой. Этот феномен очень важен для квантовых вычислительных машин и применяется в криптографии — области, в которой Алан Тьюринг преуспел во время работы в Блетчли- парке.
У нас есть два кубита, которые обозначим А и В, в состояниях 0 и 1. Представим их, согласно системе счисления, в виде |0>A и |1>B соответственно. Если они запутаны, нужно использовать символ ®, применяемый в математике для обозначения операции тензорного произведения, как показано далее:
В предыдущем выражении 1/√2
является величиной от применения тензорного произведения к системе из двух кубитов. Не вдаваясь в детальные объяснения, можно сказать: предполагается, что кубиты находятся в так называемом гильбертовом пространстве — обобщении евклидова пространства. Возведя эту величину в квадрат:
(1/√2)2,
получаем 1/2. Это позволяет измерить состояния в квантовом эксперименте и получить результаты |01> или |10>.
Представим, что Алан Тьюринг — друг Эндрю Ходжеса, его лучшего биографа, и что он может измерить, в каком состоянии находится кубит А, а Ходжес может измерить, в каком состоянии находится кубит В. Для того чтобы сделать эксперимент еще более эффектным, представим, что Алан и Эндрю находятся в разных комнатах и оба имеют устройство для измерения состояния кубитов.
РИС.З