Читаем Размышления о думающих машинах. Тьюринг. Компьютерное исчисление полностью

Сегодня мы можем создать только крайне усеченную версию квантового компьютера — с помощью обычного. Одним из таких примеров является jQuantum — программа, с помощью которой можно разработать элементарные цепи, используя стандартные квантовые операторы. Она позволяет разработать реестр данных, может хранить до 15 кубит, создать цепь и выполнить алгоритм.

МЕЧТА ТЬЮРИНГА: УМНЫЕ МАШИНЫ НА СЛУЖБЕ ЧЕЛОВЕКА

Внезапно оборвавшаяся в 1954 году жизнь Алана Тьюринга не позволила ему закончить исследования в Манчестерском университете. Он как раз приступил к разработке моделей нейронных цепей, с помощью которых можно изучать так называемые «умные» машины, учитывая особенности работы человеческого мозга. В год смерти Тьюринга двое исследователей из Массачусетского технологического института, Бельмонт Фарли (1920-2008) и Уэсли Кларк (р. 1927), успешно смоделировали на компьютере сеть из 128 нейронов, которые могли распознавать простые модели после фазы обучения. Ученые отметили, что при уменьшении количества нейронов на 10% сеть не теряла способностей к распознаванию. Конечно, модель была элементарной, она состояла из нейронов, соединенных друг с другом случайным образом, каждое соединение было связано с определенным весом, и нейронная цепь вела себя подобно сети Маккалока — Питтса. Ее обучение происходило в соответствии с правилом Хебба, то есть когда один нейрон постоянно стимулировал другой, их синаптическая пластичность возрастала, и вес соединения между обоими нейронами увеличивался. В 1956 году, через два года после смерти Тьюринга, Джон Маккарти использовал термин искусственный интеллект на конференции по компьютерной симуляции поведения человека. Через год, в 1957 году, психолог Фрэнк Розенблатт (1928-1971) разработал перцептрон — первую искусственную нейронную сеть, имеющую практическое применение.

На основе этих моделей возникли другие модели искусственных нейронных сетей, например сети обратного распространения, с помощью которых можно более эффективно распознавать буквы, числа, фотографии и так далее. Сегодня как простые сети, так и сети обратного распространения широко используются, например, при классификации электронной почты для удаления нежелательных писем — спама, для распознавания речи и изображений, анализа электроэнцефалограммы (ЭЭГ) человека, распознавания сердечного ритма плода и отделения его от материнского — этот список можно продолжать очень долго. В течение нескольких лет искусственные нейронные сети применяются в интегрированных цепях — так называемых нейрочипах, которые вставляются в компьютер или другое оборудование с целью разработки приложений или интеллектуальных систем для решения самых разных проблем, в том числе и указанных выше. Потребовалось более полувека для того, чтобы идеи Тьюринга об умных машинах воплотились в жизнь.

ДНК И ЖИЗНЬ В КОМПЬЮТЕРЕ

В конце жизни Алан Тьюринг ставил передовые эксперименты по симуляции морфогенеза, то есть биологических процессов, протекающих при развитии организма. Для этой цели ученый использовал компьютеры Манчестерского университета. Тьюринг утверждал, что некоторые химические вещества (морфогены), физико-химические процессы (допустим, диффузия, то есть движение таких молекул, как морфогены), а также другие феномены, например активация или ингибиция (подавление), ответственны за процессы клеточной дифференциации, состоящей из этапов, которые проходит клетка от эмбриона до взрослого индивидуума. Центральной идеей была мысль о том, что положения, которые занимают недифференцированные, или неспециализированные клетки эмбриона, содержат записанную в морфогенах информацию, согласно которой морфогены контролируют развитие эмбриона. Этот процесс приводит к специализации клеток и превращению зародыша во взрослую особь. Так еще раз проявилась гениальность Тьюринга, предсказавшего существование морфогенов задолго до того, как они были открыты.

ЭМУЛЯЦИЯ ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙ

Перейти на страницу:

Похожие книги