Если вы хотите научиться самостоятельно создавать модели глубокого обучения, мы настоятельно рекомендуем серию книг Франсуа Шолле, посвященных использованию библиотеки глубокого обучения Keras для языков R и Python.
• Шолле Ф. «Глубокое обучение на Python» (Издательство: Питер, 2018).
• Шолле Ф. и Аллер Дж. Дж. «Глубокое обучение на R». (Издательство: Питер, 2018).
Искусственный интеллект и вы
В завершение этой главы мы хотим немного поговорить об искусственном интеллекте (ИИ) и его приложениях. Как главный по данным, вы должны знать о существовании двух типов искусственного интеллекта. Первый из них – общий искусственный интеллект (ОИИ), призванный воспроизвести процесс человеческого познания. Здесь вы можете вспомнить свой любимый научно-фантастический фильм. Однако прогресс в области ОИИ столь незначительный, что поводов для беспокойства пока нет.
Тем не менее значительный прогресс был достигнут в области искусственного интеллекта узкого назначения (или слабого ИИ). Она охватывает компьютерные системы, которые хорошо справляются с какой-то одной задачей, например, с распознаванием лиц, переводом речи или обнаружением признаков мошенничества. Эффективность слабого ИИ обусловлена эффективностью машинного обучения. Можно сказать, что ИИ – это и есть машинное обучение. Говоря об ИИ, мы на самом деле говорим о машинном обучении. А если задача связана с обработкой перцептивных, неструктурированных данных, то речь идет о глубоком обучении. Машинное обучение – это подраздел ИИ, а глубокое обучение – подраздел машинного обучения (рис. 12.9).
Рис. 12.9. Глубокое обучение – это подраздел машинного обучения, которое является подразделом искусственного интеллекта
Некоторые люди используют термин ИИ более свободно, чем другие. Например, в обществе принято называть систему рекомендаций фильмов искусственным интеллектом, тогда как в ее основе лежит скорее машинное или статистическое обучение. Почему это важно? Дело в том, что понимание того, что создание «ИИ», о котором говорится в новостях, требует больших наборов данных, собранных у таких людей, как вы и я, ставит вопрос о качестве этих данных, изменчивости, возможной утечке, переобучении и множестве других практических проблем. ИИ усиливает закономерности, содержащиеся в данных, собранных в прошлом; речь не идет о создании чего-то напоминающего человеческое сознание.
Однако существование этой дихотомии объясняется преимуществами технологических гигантов, которые на протяжении многих лет незаметно собирали размеченные данные для своих моделей машинного и глубокого обучения.
Помните, как много лет назад вы щелкали по своим фотографиям в социальных сетях? То же самое делали миллионы других людей, предоставляя этим платформам множество изображений (входных данных) с расположением лиц (выходных данных). Теперь благодаря глубокому обучению система способна нарисовать рамку вокруг вашего лица и отличить вас от вашего друга. А надоедливые капчи, предлагающие вам доказать, что вы человек, при посещении определенных сайтов («Выберите все изображения с пересечением улиц»), используются для глубокого обучения сетей, лежащих в основе работы систем беспилотных транспортных средств[139]. Возможно, вы решите воздержаться от поездок на беспилотном автомобиле до тех пор, пока веб-сайты не перестанут просить вас идентифицировать знаки «стоп» на изображениях.
При обсуждении глубокого обучения сбору данных уделяется наименьшее внимание, поскольку эта тема гораздо менее захватывающая по сравнению с разговорами о человеческом мозге и автоматической классификации изображений. Но если вас интересует то, как ваша компания может извлечь выгоду из глубокого обучения или машинного обучения вообще, то вашим первым шагом будет сбор размеченных данных. Если у вас есть данные (например, изображения, которые нужно разметить), но вы не хотите тратить на это время – не проблема. Для решения этой задачи создана целая индустрия, и вы можете заплатить сущие копейки за то, чтобы другие люди разметили ваши данные за вас. Так что будущее, в котором можно легко получить доступ к необходимым наборам данных, может быть гораздо ближе, чем кажется.