Тем не менее мы настоятельно рекомендуем вам воспользоваться всеми доступными алгоритмами, включая методы текстовой аналитики. Понимание зависит не столько от мощности компьютеров, сколько от контекста и ожиданий. Если вы осознаете ограничения текстовой аналитики до того, как приступите к ней, вы будете готовы правильно ее использовать.
Подведение итогов
Мы надеемся, что с помощью данной главы нам удалось убедить вас в том, что компьютеры понимают язык не так, как люди, – для компьютера это просто цифры. На наш взгляд, понимание одного этого факта уже очень важно. В следующий раз вы с меньшей вероятностью клюнете на маркетинговую удочку, когда услышите о том, что искусственный интеллект способен решить любую бизнес-задачу, связанную с текстом: в процессе преобразования текста в числа теряется часть смысла, который мы вкладываем в слова и предложения. В этой главе мы обсудили три метода:
– мешок слов;
– N-граммы;
– векторное представление слов.
После преобразования текста в числа вы можете применять методы обучения без учителя, например, тематическое моделирование, или методы обучения с учителем, такие как классификация текстов. Наконец, мы поговорили о том, почему технологические гиганты одерживают верх, и порекомендовали вам формулировать свои ожидания исходя из имеющихся данных и ресурсов.
В следующей главе мы продолжим анализировать неструктурированные данные и поговорим о нейронных сетях и глубоком обучении.
Глава 12
Концептуализируйте глубокое обучение
«Появление искусственного интеллекта иногда называют новой промышленной революцией. И если глубокое обучение – это паровой двигатель этой революции, то данные – это уголь: топливо, питающее наши интеллектуальные машины, без которого ничего не было бы возможно»
Поздравляем: вам удалось добраться до главы, которая во многих отношениях является кульминацией вашего пути становления главным по данным. В ней мы соберем вместе различные фрагменты мозаики и погрузимся в развивающуюся область машинного обучения, называемую глубоким обучением.
Сегодня использование глубокого обучения стимулирует развитие передовых технологий, а его человекоподобные проявления периодически вызывают восхищение общественности. Сфера глубокого обучения охватывает технологии, лежащие в основе работы систем распознавания лиц, автономного вождения, обнаружения рака и перевода речи. То есть они помогают принимать решения, которые некогда считались прерогативой человека. Однако, как будет показано далее, глубокое обучение не является чем-то новым и не настолько похоже на работу человеческого разума, как может показаться на первый взгляд.
Большая часть ожиданий и ажиотажа в сфере работы с данными обусловлена потенциалом глубокого обучения. Неудивительно, что представители делового мира тратят много денег на внедрение этой технологии, что в ближайшие годы может повлиять на многие отрасли. Однако по мере развития сферы глубокого обучения нарастает и шумиха вокруг нее. При этом из виду часто упускаются порождаемые ею этические проблемы.
В этой главе мы рассмотрим компоненты глубокого обучения, начав с его структуры. В основе глубокого обучения лежит семейство моделей, называемых искусственными нейронными сетями. Считается, что эти алгоритмы имитируют то, как мозг обдумывает идеи, – однако, как мы увидим далее, это верно лишь отчасти. Затем мы поговорим о том, как нейронные сети можно модифицировать для решения более сложных задач (вроде распознавания образов). В конце главы мы коснемся практических проблем, связанных с применением технологии глубокого обучения, поговорим о ее неправильном использовании и более широких последствиях применения моделей типа «черный ящик».
Нейронные сети
Прежде чем концептуализировать глубокое обучение, сначала необходимо познакомиться с его строительными блоками – искусственными нейронными сетями.
Человеческий мозг – это сеть, состоящая из биологических нейронов. Считается, что эти нейроны «поглощают информацию» в виде химических сигналов и электрических импульсов. В определенный момент – мы не до конца понимаем, в какой именно – эта информация «активирует» нейрон, то есть заставляет его среагировать. Если вы ведете машину, и на дорогу внезапно выбегает олень, ваш мозг быстро обрабатывает входные данные (вашу скорость, расстояние до оленя, присутствие машин поблизости), активируя миллионы нейронов, которые, в свою очередь, принимают решение (нажать на тормоз или свернуть с дороги)[124].