Что, если для построения классификационной модели вы собрали все возможные исторические данные о заявках соискателей на прохождение стажировки, в том числе о том, были ли они в конечном итоге наняты на работу или нет (0 означает «Нет», а 1 – «Да»). А затем вы применили логистическую регрессию, чтобы предсказать, получит ли предложение тот или иной кандидат.
Как вы думаете, что не так с использованием атрибута «нанят»?
Слово «нанят» означает, что соискатель согласился устроиться на постоянную работу после стажировки (вот и утечка). Только соискатели, получившие предложение пройти стажировку (что вы и пытаетесь предсказать), будут иметь входной параметр «Нанят?» = 1. Если значение атрибута «Нанят?» = 1, то значение целевого параметра «Пригласить?» также всегда должно быть равно 1. Данная модель абсолютно бесполезна, потому что обучена на данных, которые не могут быть доступны во время прогнозирования.
Критическое осмысление имеющихся данных и входных признаков в алгоритме контролируемого обучения – это то, что программа не может сделать за специалистов по работе с данными.
Если вы не разделите свои данные на набор для обучения и набор для тестирования, вы рискуете переобучить свою модель и получить ужасную производительность при анализе новых данных. Как правило, рекомендуется использовать 80 % наблюдений в наборе данных для обучения модели, а остальные 20 % – для тестирования ее производительности.
Янн ЛеКун, главный научный сотрудник Meta[103] по вопросам искусственного интеллекта, сформулировал это так: «Тестирование модели на обучающем наборе предается анафеме в мире машинного обучения, поскольку это величайший грех, который только можно совершить»[104]. Поэтому убедитесь в том, что вы тестируете свои модели на данных, с которыми они раньше не сталкивались. Если ваш алгоритм машинного обучения демонстрирует практически идеальные прогнозы, что возможно в случае деревьев решений с градиентным усилением – значит, ваша модель, скорее всего, переобучена.
Большинство моделей классификации выдают не метку, а вероятность принадлежности к положительному классу. Как вы помните, для студента со средним баллом 2,0 шанс получить приглашение на стажировку составлял 4 %, а для студента со средним баллом 3,0 – 41 %. Однако на основе этой информации нельзя ничего сделать до тех пор, пока не будет сформулировано решающее правило.
Именно здесь в игру вступаете вы. Выбор порогового значения вероятности для выполнения окончательной классификации – это решение, которое должен принять человек, а не машина. Многие программные пакеты в качестве такого значения по умолчанию выбирают 0,5 или 50 %. Однако это значение не обязательно соответствует особенностям стоящей перед вами проблемы.
Не стоит относиться к его выбору легкомысленно. Для модели, которая определяет, кому стоит отправить по почте предложение кредитной карты, можно задать низкое пороговое значение (судя по нашим почтовым ящикам, так и происходит), тогда как модель, оценивающая претендентов на прохождение дорогостоящего лечения, может иметь высокое значение. Вам необходимо учитывать эти компромиссы, которые сильно зависят от специфики вашей бизнес-задачи.
Теперь давайте поговорим о точности в контексте классификации и о том, что мы вообще подразумеваем под этим словом.
Поскольку вы и остальные сотрудники вашей компании занимаетесь построением, развертыванием и поддержанием работы моделей классификации, предназначенных для автоматизации процесса принятия решений, вы должны уметь оценивать эти модели.
Ваша первая задача – сделать паузу и провести инвентаризацию исторических данных. Когда вы приступите к развертыванию своей модели, вам понадобится задать критерий для ее оценки, то есть создать «средство контроля». И это необходимо сделать для любой модели классификации, которую создаете вы или ваши специалисты по работе с данными. В случае бинарной классификации для этого достаточно определить долю класса большинства в наборе данных. В наборе данных о стажерах этим классом был «Нет», так как 60 % кандидатов не получили предложения пройти стажировку (а 40 % получили).
Теперь предположим, что кто-то из вашей команды применяет XGBoost (алгоритм градиентного усиления деревьев решений) к 80 % данных (обучающий набор), и модель классификации предсказывает верные результаты в 60 % случаев на оставшихся 20 % данных (тестовый набор). Поскольку это больше, чем 50/50, такой результат может показаться вам вполне хорошим, так как в долгосрочной перспективе эта модель обещает работать лучше, чем подбрасывание монеты.