Мы по опыту знаем, что некоторые из самых больших ошибок компании совершают тогда, когда не задаются этим вопросом. А ведь этих ошибок можно было бы избежать, если бы их учли до начала реализации проекта. Дело в том, что люди, которые до сих пор работали над проектом, хотят довести его до конца любой ценой. Главные по данным изначально допускают вероятность отсутствия необходимых данных. На этот случай они предусматривают возможность сбора более качественных данных для ответа на вопрос. А если таких данных не существует, они возвращаются к исходному вопросу и пытаются пересмотреть содержание проекта.
Многим из нас доводилось участвовать в проектах, которые длились слишком долго. Если ожидания относительно длительности проекта неясны с самого начала, то со временем команды начинают посещать совещания просто по привычке и генерировать отчеты, которые никто не читает. Чтобы переломить подобные тенденции, следует ответить на вопрос: «Когда проект будет завершен?» еще до начала его реализации.
Этот вопрос позволяет сосредоточиться на причине, по которой проект был инициирован, и согласовать ожидания всех участников. Серьезные проблемы могут возникнуть в связи с тем, что в будущем вам может потребоваться некоторая информация или продукт, которых пока не существует. Определитесь с окончательным результатом. Это позволит возобновить процесс обсуждения потенциальной отдачи от инвестиций в реализацию проекта и убедиться в наличии у команды согласованной метрики для измерения его воздействия.
Итак, соберите всех участников проекта и определите причины, по которым он может быть завершен. Некоторые из них довольно очевидны, например, проект может быть свернут из-за отсутствия финансирования или снижения интереса. Отбросьте эти очевидные неудачи и сосредоточьтесь на том, что нужно сделать для решения бизнес-проблемы и успешного завершения проекта. В случае с проектами по работе с данными конечным результатом обычно является понимание (например, того, насколько эффективной была последняя маркетинговая кампания) или применение (например, прогностической модели, которая предсказывает объем поставок на неделю вперед). Многие проекты потребуют дополнительной работы, например, в виде дальнейшей поддержки и обслуживания, и об этом команде необходимо сообщить заранее.
Не думайте, что знаете ответ на этот вопрос, пока не задали его.
Ответ на последний вопрос готовит участников проекта к тому исходу, о котором они предпочли бы не думать, – к вероятности установления того, что их изначальные предположения были ошибкой. Чтобы ответить на этот вопрос, вы должны представить, что находитесь в точке невозврата. После многих часов, потраченных на реализацию проекта, вы понимаете, что его результаты показывают совсем не то, на что вы рассчитывали. Обратите внимание, что речь идет не о том, что данные не позволяют ответить на поставленный вопрос. Данные отвечают на вопрос и, возможно, довольно уверенно – но полученный ответ не устраивает заинтересованные стороны.
Осознавать то, что результаты проекта оказались не такими, как вы ожидали, всегда нелегко. К сожалению, такое случается гораздо чаще, чем можно было бы предположить. Заранее обдумав возможность неудовлетворительного результата проекта, вы сможете разработать план действий на тот случай, если вам потребуется сообщить участникам плохие новости.
Задав этот вопрос, вы также сможете обнаружить различия в восприятии результатов проекта разными людьми. Например, вспомните нашего аватара Джорджа из введения. Джордж относится к тому типу людей, которые склонны игнорировать результаты, не отвечающие их убеждениям, и наоборот – отстаивать результаты, которые им соответствуют. Постановка данного вопроса позволяет выявить подобную предвзятость еще до начала реализации проекта.
Не стоит приступать к работе над проектом, если вы знаете, что у него есть только один приемлемый результат.
Причины провала проектов по работе с данными
Проекты могут провалиться по многим причинам, среди которых нехватка финансирования, ограниченные сроки, отсутствие необходимой экспертизы, необоснованные ожидания и тому подобное. А еще существуют проблемы, связанные с данными и методами их анализа. Например, проектная группа может применить метод анализа, который она не может объяснить, к данным, которые она не понимает, чтобы решить не имеющую значения проблему – и все равно считать полученный результат успехом.
Давайте рассмотрим такой сценарий.
Вы работаете в компании X, входящей в список Fortune 10, чья социально нечувствительная маркетинговая кампания вызвала негативную реакцию со стороны средств массовой информации. Вас назначили ответственным за мониторинг «клиентского восприятия». В команду проекта входят следующие люди:
– менеджер проекта (вы);
– спонсор проекта (лицо, оплачивающее его реализацию);