А теперь посмотрим, что получается при проверке корректности, при проверке зависимости собственных значений от малых изменений коэффициентов. После эквивалентных преобразований мы имеем дело с уравнением (6). В него входят два одинаковых коэффициента: двойка при и двойка как свободный член. Пусть свободный член изменился на 1% и стал равен 1,98. Тогда и собственное значение изменится на 1% и станет равным 1,01. То же самое произойдет, если на 1% изменится коэффициент при . Общий вывод: малым изменениям коэффициентов соответствуют малые изменения решения. Решение корректно.
А теперь (внимание!) исследуем корректность решения той же задачи
(1,982 +
Отыскивая собственные значения для системы (7)-(8), мы убедимся, что их
Для простой системы (1)-(2) все ясно и понятно: в уравнениях (1) и (2) коэффициенты при 2 после эквивалентного преобразования взаимно сокращаются и исчезают, хотя именно их малые изменения в исходной системе приводят к большим изменениям собственных значений. В более сложных системах все сложнее, распутать причины и следствия очень не просто, но главное заключается в другом: даже на примере очень простой системы (1)-(2) мы показали, что эквивалентные преобразования могут изменять многие важные свойства математических моделей. Могут изменять корректность решения, могут изменять запасы устойчивости и т. д. Впервые все это было опубликовано в 1987 году, в книге [1] (номер в квадратных скобках соответствует номеру в списке литературы в конце брошюры), а более подробно — в книгах [2], [3].
§ 6. Следствия. Методы предотвращения катастроф
Теперь рассмотрим — какие следствия вытекают из открытий, сделанных с СПбГУ. Прежде всего — сразу получаем простое и логичное объяснение тайны катастрофы аквапарка «Трансвааль». Вполне возможно, что купол аквапарка оказался особым объектом, математическая модель которого изменяет корректность решений при эквивалентных преобразованиях — подобно математической модели в виде системы (1)-(2), которую мы рассмотрели в предыдущем разделе. Купол аквапарка проектировал Н. Канчели примерно в 2000 году. Он проводил расчет критических нагрузок по преобразованной модели, поскольку в 2000 году все методики строительных расчетов рекомендовали поступать именно так. В 2000 году никто из строителей еще не подозревал о существовании особых объектов, не понимал истинных свойств эквивалентных преобразований. Поэтому Н. Канчели с чистой совестью правильно и добросовестно применял общепринятые тогда методы расчета, а руководитель Мосгосэкспертизы А. Воронин, проверяя его расчеты, подтвердил, что они сделаны правильно и в полном соответствии с общепринятыми нормами и правилами, существующими в 2000 году. А то, что для особых объектов эти общепринятые нормы и правила неизбежно ведут к катастрофам и гибели людей — об этом в 2000 году никто из архитекторов и строителей еще не знал. Поэтому предъявление уголовных обвинений Н. Канчели и А. Воронину не поможет делу.
Ну хорошо, посадят их в тюрьму, и что — наша жизнь станет безопаснее? Нет, не станет. Если не уточнить методы и правила расчетов, то у другого архитектора, который на свою беду встретится с «особым» объектом, неизбежно все обрушится, и люди снова погибнут.