Фотоматериалы и лекарства, катализаторы для химических процессов и металлические покрытия — всюду хром оказывается при деле. О хромовых покрытиях следует, пожалуй, рассказать подробнее.
Давно было замечено, что хром не только отличается большой твердостью (в этом отношении у него нет конкурентов среди металлов), но и хорошо сопротивляется окислению на воздухе, не взаимодействует с кислотами. Тонкий слой этого металла попробовали электролитически осаждать на поверхность изделий из других материалов, чтобы предохранить их от коррозии, царапин и прочих "травм". Однако хромовые покрытия оказались пористыми, легко отслаивались и не оправдывали возлагаемых на них надежд. Почти три четверти века бились ученые над проблемой хромирования, и лишь в 20-х годах нашего столетия проблема была решена. Причина неудач заключалась в том, что используемый при этом электролит содержал трехвалентный хром, который не мог создать нужное покрытие. А вот его шестивалентному собрату такая задача оказалась по плечу. С этого времени в качестве электролита начали применять хромовую кислоту — в ней валентность хрома равна 6. Толщина защитных покрытий (например, на некоторых наружных деталях автомобилей, мотоциклов, велосипедов) достигает 1 миллиметра. Но иногда хромовое покрытие используют в декоративных целях — для отделки часов, дверных ручек и других предметов, не подвергающихся серьезной опасности. В таких случаях на изделие наносят тончайший слой хрома (0,0002-0,0005 миллиметра).
Литовские химики разработали способ создания многослойной "кольчуги" для особо ответственных деталей. Тончайший верхний слой этого покрытия (под микроскопом его поверхность и в самом деле напоминает кольчугу) состоит из хрома: в процессе службы он первым принимает огонь на себя, но пока хром окисляется, проходят многие годы. Тем временем деталь спокойно несет свою ответственную службу.
До недавних пор хромировали только металлические детали, но теперь ученые научились наносить хромовую броню и на изделия из пластмасс. Подвергнутый испытаниям широко известный полимер — полистирол, одетый в хром, стал прочнее, для него оказались менее страшными такие извечные враги конструкционных материалов, как истирание, изгиб, удар. Само собой разумеется, возрос срок службы деталей.
Хромовая броня пригодилась даже такому эталону твердости, каким по праву считается алмаз. Дело в том, что далеко не все добытые алмазы могут быть использованы для изготовления обрабатывающего инструмента: как правило, природные алмазы имеют множество тончайших трещинок, которые делают камни непригодными для установки на резцы или буровые коронки: как только такой инструмент касался металла или твердой породы, алмаз рассыпался на мелкие осколки. Кроме того, кристаллики природных алмазов часто выскакивали из державки инструмента. Чтобы устранить этот недостаток, ученые предложили покрывать алмазы тонкой пленкой хрома, довольно плотно соединяющегося и с алмазом, и с медной державкой.
Металлизованный алмаз был подвергнут испытаниям. И что же выяснилось? Алмаз надежно держался в инструменте, а срок службы кристалла возрос в несколько раз. Когда такой кристалл исследовали под микроскопом, на одной из граней обнаружили довольно глубокую трещинку, зацементированную пленкой, покрывавшей камень. Оказалось, что атомы хрома, соединившись с углеродом алмаза, образовали на его поверхности твердые карбиды, причем хром проник и в трещинку, стенки которой также покрылись карбидной броней. А слой чистого хрома, прилегающий к державке, образовал с медью сплав, благодаря чему алмаз прочно закрепился в инструменте. Так с помощью хрома удалось убить двух зайцев: инструмент стал долговечнее, а алмаз — прочнее… алмаза.
В 1974 году в Дубне учеными Объединенного института ядерных исследований был получен изотоп трансуранового элемента с порядковым номером 106. Увенчавшаяся успехом реакция ядерного синтеза произошла в результате бомбардировки свинцовой мишени ускоренными ионами хрома. Свинец уже не раз служил мишенью в подобных опытах, а хром был выбран по чисто арифметическим соображениям: вместе с 82 протонами, которыми располагает ядро атома свинца, 24 протона ядра хрома составили при слиянии этих ядер нужное число — 106. И хотя изотоп этого элемента живет всего несколько миллисекунд, чувствительные приборы зафиксировали рождение нового трансурана.
…Прежде чем закончить рассказ о хроме, мы вновь обратимся к воспоминаниям B.C. Емельянова. "Года два назад, — писал ученый в 1967 году, — я узнал глубоко взволновавшую меня новость, оставшуюся в нашей стране — увы! — незамеченной. Мы продали партию феррохрома Англии — стране, которая всегда была для нас символом технического прогресса. И вот теперь Англия покупает наш феррохром! Англичане понимают толк в том, что покупают".
Вечный спутник железа
Василий Кузьмич Фетисов , Евгений Ильич Ильин , Ирина Анатольевна Михайлова , Константин Никандрович Фарутин , Михаил Евграфович Салтыков-Щедрин , Софья Борисовна Радзиевская
Приключения / Публицистика / Детская литература / Детская образовательная литература / Природа и животные / Книги Для Детей