Академик П. Л. Чебышев является основателем петербургской математической школы. Характерные особенности этой школы — смелое дерзание в науке и самая тесная связь математических теорий с практикой. Эта школа покрыла русскую науку неувядаемой славой. Лучшие ученики Чебышева (А. Н. Коркин, Е. И. Золотарев, А. А. Марков, Г. Ф. Вороной, А. М. Ляпунов, В. А. Стеклов, А. Н. Крылов, С. Н. Бернштейн и другие) стали учеными с мировым именем.
П. Л. Чебышев, как член Ученого комитета по математическим наукам, принимал самое деятельное участие в постановке преподавания математики в России. Эта его работа характеризуется стремлением к точности и строгости изложения в учебниках для средней школы, а также требованием наиболее полно представлять курс элементарной математики.
П. Л. Чебышеву принадлежит несколько открытий в области теории чисел, в частности исследование о распределении простых чисел в натуральном ряду.
Древнегреческий математик Евклид (III в. до н. э.) доказал теорему о бесконечности ряда простых чисел, т. е. показал, что не существует в этом ряду наибольшего простого числа. Это предложение известно под названием «теоремы Евклида».
Вопрос о том, по каким законам распределены простые числа во всем натуральном ряду, сколь правильно и как часто, оставался без ответа более двух тысяч лет, хотя им занимались крупнейшие математики мира, в том числе Эйлер и Гаусс.
До Чебышева вопросы распределения простых чисел решались экспериментально, путем наблюдений и не всегда обоснованных предположений. Таким образом французский математик Лежандр (1752–1833) установил, что в пределах первого миллиона число простых чисел, меньших
где In
Основоположником строгой теории распределения простых чисел является П. Л. Чебышев. Его открытия в этом направлении — подлинный триумф русской математической мысли. Чебышев строгими логическими рассуждениями доказал, что указанная выше формула Лежандра, установленная опытным путем в пределах первого миллиона, является необоснованной и неверной за пределами этого миллиона. Далее Чебышев доказал упомянутую выше гипотезу Бертрана и тем самым установил совершенно строгое предложение, относящееся к закону распределения простых чисел в натуральном ряду. Кроме того, П. Л. Чебышев доказал, что если
при
В 1896 году, уже после смерти П. Л. Чебышева, французский ученый Адамар и бельгийский математик Валле Пуссен, пользуясь аппаратом теории функций комплексного переменного, независимо друг от друга доказали, что
Таким образом, для достаточно больших
Научные открытия П. Л. Чебышева в области теории чисел трудно переоценить, они принесли славу русской математической науке и оказали огромное влияние на научное творчество многих выдающихся ученых на родине и за рубежом.
Но не только одной теорией чисел занимался Чебышев. Он много сделал, например, в области математического анализа. Здесь он создал совершенно новый раздел, известный под названием «Теория наилучшего приближения функций многочленами». Ряд выдающихся работ Чебышева относится к теории вероятностей и другим математическим дисциплинам.
П. Л. Чебышев большое внимание уделял вопросам связи научной теории с практикой. Помимо больших теоретических трудов, Чебышев написал ряд работ прикладного значения, например: «Об одном механизме», «О зубчатых колесах», «О простейших сочленениях (механизмах)», «О построении географических карт», «О кройке платья» и т. д. О взаимосвязи теории с практикой Чебышев говорил неоднократно. С особой силой по этому вопросу он высказался в своей работе «Черчение географических карт». Вот его слова: «Сближение теории с практикой дает самые благоприятные результаты, и не одна только практика от этого выигрывает, сами науки развиваются под влиянием ее: она открывает им новые предметы для исследования или новые стороны в предметах, давно известных. Несмотря на ту высокую ступень развития, до которой доведены науки математические трудами великих геометров трех последних столетий, практика обнаруживает ясно неполноту их во многих отношениях; она предлагает вопросы, существенно новые для науки, и, таким образом, вызывает на изыскание совершенно новых метод. Если теория много выигрывает от новых приложений старой методы или новых развитий ее, то она еще более приобретает открытием новых метод и в этом случае наука находит себе верного руководителя в практике»[53].