Пифагор и его ученики много потрудились над тем, чтобы придать геометрии научный характер. Кроме знаменитой теоремы, носящей его имя, Пифагору приписывается еще ряд замечательных открытий, в том числе:
1. Теорема о сумме внутренних углов треугольника.
2. Задача о покрытии, т. е. деление плоскости на правильные многоугольники (равносторонние треугольники, квадраты и правильные шестиугольники).
3. Геометрические способы решения квадратных уравнений.
4. Способ решения задачи: построить многоугольник, равновеликий одному данному многоугольнику и подобный другому.
Наибольшую славу Пифагору принесла открытая им «теорема Пифагора», которая и до настоящего времени считается одной из важных теорем геометрии, используемых на каждом шагу при изучении геометрических вопросов. Частные случаи этой теоремы были известны некоторым древним народам еще до Пифагора. Например, в своей строительной практике египтяне пользовались так называемым «египетским треугольником» со сторонами 3, 4 и 5. Египтяне знали, что указанный треугольник является прямоугольным и для него выполняется соотношение: 32 + 42 = 52, т. е. как раз то, что утверждает теорема Пифагора.
Частные случаи этой теоремы были известны также китайцам и индийцам. Трудно указать время, когда эти народы впервые стали пользоваться «пифагоровым» соотношением. Но достоверно, что теоремой Пифагора китайцы и индийцы пользовались издавна.
В древнем Китае теорему Пифагора стали применять около 2200 лет до новой эры. В знаменитом трактате «Математика в девяти книгах», составление которого относится «к началу новой эры, теорема о соотношении сторон в прямоугольном треугольнике использовалась под видом правила „Гоу-гу“». Согласно этому правилу, древние китайцы по известной гипотенузе и одному катету находили другой, неизвестный катет, а также гипотенузу, если были известны оба катета. Термины «гоу» и «гу» обозначают катеты прямоугольного треугольника, причем «гоу» — горизонтальный, обычно меньший катет, а «гу» — вертикальный и обычно больший катет. В буквальном переводе «гоу» означает крюк, «гу» — ребро, связка.
Индийским ученым теорема Пифагора стала известна не позднее VIII века до новой эры. В самом старом памятнике индийской геометрии «Сулва-сутрах» (VII в. до н. э.) эта теорема формулировалась так: «Веревка, проведенная наискось в продольном квадрате [прямоугольнике], образует то же, что образует вместе каждая из мер: продольных и поперечных». Эта же теорема в виде краткого правила излагалась еще и так: «То, что образуется на двух сторонах, равно тому, что образуется по диагонали».
Доказательство самого Пифагора своей знаменитой теоремы до нас не дошло. Историки полагают, что первоначальное доказательство теоремы Пифагора относилось к частному случаю, т. е. к рассмотрению равнобедренного прямоугольного треугольника, как это делали индийцы, исходя непосредственно из чертежа.
Открытие теоремы Пифагора связано с разного рода легендами. Например, одна из легенд говорит, что Пифагор, обрадованный своим открытием, в благодарность принес богам в жертву 100 быков (гекатомбу). На эту тему немецкий поэт Адельберт Шамиссо написал стихотворение, которое в переводе Натальи Тереховой и приводится ниже:
Однако это предание о 100 быках, якобы принесенных Пифагором в жертву, мало соответствует действительности, так как устав пифагорейцев запрещал им всякое пролитие крови. Еще Марк Тулий Цицерон (106-43 гг. до н. э.), выдающийся оратор, писатель и политический деятель древнего мира, сомневался в правдивости рассказанной выше легенды, а последователи Пифагора позднейших веков (неопифагорейцы) живых быков заменили «быками», сделанными из муки.
Пифагору приписываются «Золотые стихи» и «Символы». Ниже приводятся некоторые изречения из «Золотых стихов»: