pid 2009, tid 32771
pid 2010, tid 49156
pid 2011, tid 65541
pid 2012, tid 81926
pid 2013, tid 98311
pid 2014, tid 114696
pid 2015, tid 131081
pid 2016, tid 147466
pid 2017, tid 163851
А вот результат эволюции в направлении POSIX при переходе от ядра Linux 2.4.x к 2.6.x (алгоритм формирования TID все еще остается загадочным, но уже выполняются требования POSIX о выделении TID в рамках единого PID):
$ uname -sr Linux 2.6.3-7mdk
$ ./test_pthread
pid 13929, tid 1083759536
pid 13929, tid 1092156336
pid 13929, tid 1100549040
pid 13929, tid 1108941744
pid 13929, tid 1117334448
pid 13929, tid 1125727152
pid 13929, tid 1134119856
pid 13929, tid 1142512560
pid 13929, tid 1150905264
pid 13929, tid 1159297968
И наконец, тот же тест, выполненный в QNX 6.2.1:
# uname -a
QNX home 6.2.1 2003/01/08-14.50:46est х86рс x86
# ptid
pid 671779, tid 2
pid 671779, tid 3
pid 671779, tid 4
pid 671779, tid 5
pid 671779, tid 6
pid 671779, tid 7
pid 671779, tid 8
pid 671779, tid 9
pid 671779, tid 10
pid 671779, tid 11
Системы реального времени принципиально отличаются от систем общего назначения тем, что для таких систем важна не только корректность выполнения возложенных на них функций, но и время, за которое эти функции реализуются. Можно даже сказать, что для задач реального времени опоздание с выполнением практически эквивалентно невыполнению задачи: требуемая реакция или управляющее воздействие не поступили в срок. Предельный срок, в который задача реального времени должна быть выполнена, называют критическим сроком обслуживания(deadline).
Если система реального времени реализуется как многопоточная система (а в настоящее время такой вариант рассматривается фактически как стандартный), то при ее разработке зачастую возникает проблема определения того, действительно ли все задачи реального времени, конкурирующие в системе за вычислительный ресурс, успевают исполниться в их критический срок обслуживания.