Читаем QNX/UNIX: Анатомия параллелизма полностью

void Func_2(void) {

 static int С = 0;

 M += 2;

 C++;

 M -= 2;

}

void Func_1(void) { Func_2; }

void* ThreadProc(void *data) {

 Func_1;

 return NULL;

}

...

for (int i = 0; i < N; i++)

 pthread_create(NULL, NULL, &ThreadProc, NULL);

Можно ли здесь утверждать, что переменная Mсохранит нулевое значение, а переменная Сдействительно является счетчиком вызовов и ее результирующее значение станет N? Ни в коей мере: после выполнения такого фрагмента в переменных может быть все что угодно. Но цепочка вызовов Func_1->Func_2может быть сколь угодно длинной, описание Func_2может находиться совершенно в другом файле кода (вместе с объявлением переменной M!) и, наконец, Func_2в нашей транскрипции может быть любой функцией из библиотек C/C++, писавшейся лет 15 назад и содержащей в своем теле статические переменные!

POSIX.1 требует, чтобы определенные в нем функции были максимально безопасными в многопоточной среде. Но переработка всех библиотек - трудоемкий и длительный процесс. API QNX (и так поступили производители многих POSIX-совместимых ОС) для потенциально небезопасных в многопоточной среде функций ввели их эквиваленты, отличающиеся суффиксом «_r», например: localtimelocaltime_r, randrand_rи т.д. Принципиально небезопасна в многопоточной среде одна из самых «любимых» в UNIX функция — select.

<p>Собственные данные потока</p>

Описанной выше схеме общих данных приложения и локальных данных потока, достаточных для большинства «ординарных» приложений, все-таки определенно не хватает гибкости, покрывающей все потребности. Поэтому в расширениях POSIX реального времени вводится третий специфичный механизм создания и манипулирования с данными в потоке — собственные данные потока (thread-specific data). Использование собственных данных потока — самый простой и эффективный способ манипулирования данными, представленными индивидуальными экземплярами данных для каждого потока.

Согласно POSIX операционная система должна поддерживать ограниченное количество объектов собственных данных (POSIX.1 требует, чтобы этот предел не превышал128 объектов на каждый процесс). Ядром системы поддерживается массив из этого количества ключей (тип pthread_key_t; это абстрактный тип, и стандарт предписывает не ассоциировать его с некоторым значением, но реально это небольшие целые значения, и в таком виде вся схема гораздо проще для понимания). Каждому ключу сопоставлен флаг, отмечающий, занят этот ключ или свободен, но это внутренние детали реализации, не доступные программисту. Кроме того, при создании ключа с ним может быть связан адрес функции деструктора, которая будет вызываться при завершении потока и уничтожении его экземпляра данных (рис. 2.4).

Рис. 2.4. Ключи экземпляров данных

Когда поток вызывает pthread_key_createдля создания нового типасобственных данных, система разыскивает первое незанятое значение ключа и возвращает его значение (0...127). Для каждого потока процесса (в составе описателя потока) хранится массив из 128 указателей ( void*) блоков собственных данных, и по полученному ключу поток, индексируя этот массив, получает доступ к своему экземпляру данных, ассоциированных со значением ключа. Начальные значения всех указателей блоков данных - NULL, а фактическое размещение и освобождение блоков данных выполняет пользовательская программа (рис. 2.5).

Рис. 2.5. Поток и его собственные данные

На рис. 2.5 представлен массив структур, создаваемый в единичном экземпляре для каждого процессабиблиотекой потоков. Каждый элемент ключа должен быть предварительно инициализирован вызовом pthread_key_create(однократно для всего процесса). Каждый инициализированный элемент массива определяет объекты единого класса во всех использующих их потоках, поэтому для них здесь же определяется деструктор (это в терминологии языка С!). Деструктор — единый для экземпляров данных в каждом потоке. Даже для инициализированного и используемого ключа в качестве деструктора может быть указан NULL, при этом никакие деструктивные действия при завершении потока не выполняются.

После размещения блока программа использует вызов pthread_setspecific. Для связывания адреса своего экземпляра данных с элементом массива указателей, индексируемого ключом. В дальнейшем каждый поток использует pthread_getspecificдля доступа именно к своему экземпляру данных. Это схема, а теперь посмотрим, как она работает.

Положим, что нам требуется создать Nпараллельно исполняющихся идентичных потоков (использующих единую функцию потока), каждый из которых предполагает работать со своей копией экземпляра данных типа DataBlock:

class DataBlock {

 ~DataBlock { ... }

 ...

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
1001 совет по обустройству компьютера
1001 совет по обустройству компьютера

В книге собраны и обобщены советы по решению различных проблем, которые рано или поздно возникают при эксплуатации как экономичных нетбуков, так и современных настольных моделей. Все приведенные рецепты опробованы на практике и разбиты по темам: аппаратные средства персональных компьютеров, компьютерные сети и подключение к Интернету, установка, настройка и ремонт ОС Windows, работа в Интернете, защита от вирусов. Рассмотрены не только готовые решения внезапно возникающих проблем, но и ответы на многие вопросы, которые возникают еще до покупки компьютера. Приведен необходимый минимум технических сведений, позволяющий принять осознанное решение.Компакт-диск прилагается только к печатному изданию книги.

Юрий Всеволодович Ревич

Программирование, программы, базы данных / Интернет / Компьютерное «железо» / ОС и Сети / Программное обеспечение / Книги по IT
Access 2002: Самоучитель
Access 2002: Самоучитель

В книге рассматривается широкий круг вопросов, связанных с использованием программной среды Access 2002, которая является составной частью пакета Office 2002 и предназначена для создания банка данных в самых различных предметных областях.Подробно описывается методика проектирования объектов базы данных (таблицы, формы, отчеты, страницы доступа к данным, запросы, модули).Детально обсуждаются вопросы создания интегрированной базы данных в единой среде Access 2002: формирование БД с нуля, конвертирование в программную среду баз данных, созданных в ином программном окружении – Clarion, FoxPro.Особое внимание уделяется формированию разнообразных запросов к интегрированной базе данных Access 2002 с использованием языков программирования SQL, VBA и макросов.Приводятся общие сведения о возможностях языка обмена данными между различными компьютерами и приложениями (XML). Описываются возможности использования гиперссылок, связывающих базу данных с другими программными продуктами. Объясняется, как можно работать с базой данных Access 2002 без установки ее на компьютер, используя технологию ODBC (Open Data Base Connectivity). В приложениях приводятся количественные параметры Access 2002 и связанная с этой СУБД терминология.Предлагаемая книга будет полезна специалистам, занимающимся практической разработкой банков данных и приложений на их основе, а также студентам вузов, изучающим информатику.

Павел Юрьевич Дубнов

Программирование, программы, базы данных / ОС и Сети / Книги по IT