Человеческий организм приспособился к существующему атмосферному давлению, а также к содержанию кислорода в воздухе. При общем давлении в 760 миллиметров кислород воздуха давит на поверхность Земли и, в частности, на живые организмы с силой около 160 миллиметров ртутного столба.
На вершине Эльбруса процентный состав воздуха тот же самый, что и у подножия горы, но давление почти в два раза меньше нормального, — на долю кислорода приходится всего лишь 80 миллиметров.
Альпинист, поднявшийся на вершину горы, резко чувствует уменьшение давления: кровь не успевает насыщаться кислородом. При восхождении на Эверест альпинисты имели при себе кислородные приборы, которые подают кислород в организм под нормальным давлением. Летчики широко пользуются этим прибором.
Впрочем, коренные жители высокогорных областей спокойно переносят разреженность атмосферы: их организм приспособился к условиям среды. Так, жители Перуанских Анд могут легко переносить грузы более 50 килограммов на высоте около 5 тысяч метров. Их сердце с большей силой гонит кровь в легкие, грудная клетка мощней, кровь снабжается кислородом интенсивнее, чем у жителей долины.
Иногда и в нормальных условиях необходима усиленная порция кислорода: особенно при сердечных и легочных заболеваниях. Ведь один глоток кислорода равнозначен пяти глоткам воздуха, и в тяжелых случаях это сберегает силы больного.
Состав атмосферы — точно такой же, каким он был 175 лет назад, когда Кэвендиш исследовал воздух различных местностей Англии. А ведь каждый год миллионы людей и животных поглощают кислород, сжигают миллионы тонн угля, нефти, дерева, связывая тот же самый кислород, а он не убывает. Почему?
Таким же вопросом задался Пристли в 1772 году. В природе все целесообразно, рассуждал он. Если воздух «портится» дыханием человека и животных, а также горением, кто-то его должен «исправлять». Он посадил под колокол мышь, и, когда та задохнулась, он поместил в тот же самый колокол веточку мяты. И что же? Через некоторое время другая мышь могла снова дышать под колоколом. Растение «исправило» воздух.
Так впервые было обнаружено явление фотосинтеза.
В основе фотосинтеза лежит реакция, в результате которой вода и углекислота под действием света и красящего вещества зеленого листа — хлорофилла — превращается в крахмал и кислород. Крахмал служит растению пищей, кислород оно выбрасывает за ненадобностью. Долгое время считали, что кислород получается из углекислого газа. Но доказать это положение или опровергнуть его ученые не могли, пока в их руках не оказался «меченый» кислород 18O. С его помощью было обнаружено, что весь кислород, выделяемый растениями, обязан своим происхождением воде.
Вся зеленая масса наземных водных растений выделяет в течение каждых 3 тысяч лет столько кислорода, сколько его содержится в земной атмосфере.
Дыхание — медленное горение. Если его ускорить, заменить обыкновенный воздух чистым кислородом, то живой организм довольно быстро «сгорит», попросту погибнет.
Но в технике «быстрое горение» очень важно. Увеличение скорости технологического процесса увеличивает выход продукции при том же самом оборудовании, за то же самое время. Возьмем, к примеру, металлургический завод, выпускающий ежегодно миллион тонн стали. В год такому заводу нужно свыше 3 миллиардов кубометров кислорода. Обычно это количество берется из воздуха вместе с 12 миллиардами кубометров азота, который забирает колоссальное количество тепла (металлургический процесс ведется при 1000 °C), а затем выбрасывается заводскими трубами «для подогрева атмосферы».
В последнее время азот воздуха частично или полностью заменяют кислородом, отчего возрастает скорость металлургического процесса, резко снижается расход топлива, упрощается оборудование, в стали уменьшается количество растворенного азота, а качество ее повышается весьма заметно.
Кислород не только помогает выплавлять сталь и цветные металлы; с его помощью можно резать и сплавлять самые тугоплавкие металлы.
Кислород очень активен химически; после фтора он самый активный элемент. Многие вещества, сгорая в атмосфере чистого кислорода, выделяют большое количество тепла. Так, водород и ацетилен, сгорая в кислороде, дают температуру в 3000 °C. На стройках часто можно видеть, как рабочий разрезает синевато-желтым пламенем горелки металлические трубы. Ацетиленово-кислородной горелкой можно и сплавлять металлы: для этого нужно уменьшить подачу кислорода в горелку. Образующееся пламя называют сварочным. Направленное на стык двух кусков металла, оно оплавляет их поверхности. При остывании куски соединяются в одно целое. Чтобы разрезать кусок металла, его надо раскалить сначала сварочным пламенем; затем подается на раскаленное место струя чистого кислорода. В ней металл сгорает и улетучивается.