Читаем Путешествие в Страну элементов полностью

Когда ученые занялись его детальным изучением, обнаружились два интересных факта. Во-первых, приведенная реакция требует затраты большого количества энергии. И действительно, попробуйте получить сахар из воды и угля! Откуда же берет растение эту энергию? И, во-вторых, фотосинтез (усвоение растениями углекислоты) резко затормаживается при недостатке фосфора в растении.

Ученые нашли, что фосфор входит в состав так называемых хлоропластов — своеобразных растительных органов, непосредственно осуществляющих фотосинтез. Дальнейшее изучение роли фосфора в растениях (которое, кстати сказать, шло не один десяток лет) позволило прийти к следующим выводам. Во-первых, фосфор играет довольно значительную роль в фиксации углекислоты из воздуха. Оказалось, что растворимые фосфаты могут поглощать двуокись углерода по схеме:

CO2 + H2O + HPO42– = HCO3 + Н2PO4.

Во-вторых, фосфор входит в состав хлоропластов в виде сложных органических производных, называемых фосфолипоидами. (Сами фосфолипоиды — это глицериды, отличающиеся от жиров тем, что в них два гидроксила глицерина соединяются всегда с двумя радикалами жирных кислот, а третий — с фосфорной кислотой.)

И, наконец, в-третьих, оказалось, что реакция взаимодействия CO2 и воды с превращением в глюкозу проходит в несколько стадий, и одной из промежуточных является образование сложного фосфорорганического соединения, так называемой фосфорноглицериновой кислоты.

Выяснилось также, что фосфор необходим и при дыхании. Здесь оказалось примерно то же, что и с синтезом глюкозы. Обычно мы пишем:

C6H12O6 + 6O2 = 6CO2+6H2O.

Следовательно, при дыхании глюкоза переходит в углекислоту и воду, которые мы и выдыхаем. Однако и этот процесс оказался далеко не таким простым.

В растительных и животных организмах находится сложное органическое вещество, содержащее в своем составе фосфор. Называется оно аденозинтрифосфат. В принципе формулу его можно представить в таком виде:

Оказалось, что это вещество и ему подобные образуются в процессе дыхания и в то же время служат своеобразными накопителями мышечной энергии в животных организмах. При процессе дыхания глюкоза образует сложные фосфорнокислые эфиры, так называемые дифосфаты. При этом примерно 5–6 молекул глюкозы образуют дифосфаты, а одна окисляется до CO2. Затем дифосфаты трансформируются в аденозинтрифосфат.

Молекулы аденозинтрифосфата, присоединяясь к молекулам белка, заставляют их принимать определенную форму. Это значит, что молекула запаслась энергией. Если такой «активной» молекуле нервные ткани приносят приказ «работать», структура молекулы резко меняется — она сокращается, и человек производит какую-нибудь работу, например сгибает руку. При этом молекула аденозинтрифосфата превращается в молекулу аденозиндифосфата, и, чтобы мышца могла снова произвести какую-нибудь работу, к молекулам белка опять должна присоединиться молекула аденозинтрифосфата, чтобы они приняли исходную форму, то есть запаслись новой порцией энергии.

Фосфор, открытый почти 300 лет назад, получил свое название за способность светиться в темноте. Однако, как мы увидели, он является «несущим свет» не только в прямом смысле. Это фосфор приносит нашим полям плодородие, а в наши дома — обилие продуктов; фосфор дает «жизненную силу» животному и растительному организму. Поистине его следовало бы назвать не «несущий свет», а «несущий жизнь».

<p>Океаны из двух газов</p>

«Мир отражается в капле воды». Это не только поэтическая метафора. Действительно, в капле воды можно увидеть жизнь зеленого листа и человека, дымящиеся трубы мощных заводов, зеленеющие поля, контуры будущих термоядерных электростанций и след космического корабля, мчащегося к далеким звездам…

Самая обыденная и самая известная жидкость — вода состоит из двух химически активных газов — водорода и кислорода. В литре воды содержится 111,1 грамма водорода и 888,9 грамма кислорода, иначе говоря — 1254,32 литра водорода и ровно вдвое меньше кислорода. На Земле 2·1018 тонн воды. Наглядно представить себе это количество можно так. Построим мысленно гигантский цилиндр с площадью основания в 1 квадратный метр. Этот цилиндр, высота которого равна величине диаметра земной орбиты, то есть 300 миллионам километров, вместит всю воду нашей планеты.

Как же распределяется на Земле вода? Большая часть ее находится в морях и океанах, остальная — в реках, озерах, льдах суши, горных породах и минералах. Атмосфера содержит одну стотысячную часть всей воды. По абсолютному значению это немалая величина: если бы атмосферные пары сгустились, уровень океанов повысился бы на четверть метра. Ежегодно в круговороте находятся громадные массы воды; если бы вся испаряющаяся вода удалялась в заатмосферные высоты, океаны мелели бы на 75 сантиметров каждый год.

Вода, по образному выражению Ферсмана, — нерв Земли. Вода везде. Даже в камне. И чтобы убедиться в этом, не надо вызывать великана из старой детской сказки, того, что может выжать воду из камня.

Перейти на страницу:

Похожие книги

Алхимия
Алхимия

Основой настоящего издания является переработанное воспроизведение книги Вадима Рабиновича «Алхимия как феномен средневековой культуры», вышедшей в издательстве «Наука» в 1979 году. Ее замысел — реконструировать образ средневековой алхимии в ее еретическом, взрывном противостоянии каноническому средневековью. Разнородный характер этого удивительного явления обязывает исследовать его во всех связях с иными сферами интеллектуальной жизни эпохи. При этом неизбежно проступают черты радикальных исторических преобразований средневековой культуры в ее алхимическом фокусе на пути к культуре Нового времени — науке, искусству, литературе. Книга не устарела и по сей день. В данном издании она существенно обновлена и заново проиллюстрирована. В ней появились новые разделы: «Сыны доктрины» — продолжение алхимических штудий автора и «Под знаком Уробороса» — цензурная история первого издания.Предназначается всем, кого интересует история гуманитарной мысли.

Вадим Львович Рабинович

Культурология / История / Химия / Образование и наука