Природный уран, как выяснили ученые, состоит из смеси трех изотопов с массовыми числами 238, 235 и 234. Первого из них, урана-238, в природном уране 99,28 процента; урана-235 — только 0,71 процента, а урана-234 — и того меньше. И вот обнаружилось, что с медленными нейтронами уран-235 взаимодействует очень своеобразно. Это приводит к совершенно новой ядерной реакции. Образовавшееся ядро изотопа урана-236 вместо испускания бета-частицы распадается на два осколка примерно равной массы с одновременным «рождением» двух или трех нейтронов. Схему такого взаимодействия урана-235 с нейтроном можно представить следующим образом:
23592U + 10
При такой реакции выделяется громадная энергия и образующиеся осколки с большой скоростью разлетаются в разные стороны.
Это навело ученых на мысль о возможности проведения цепной реакции. Ведь выделяющиеся нейтроны могли и дальше взаимодействовать с новыми ядрами урана. Прошло немного времени, и в 1942 году впервые в истории человечества людям удалось провести первую цепную ядерную реакцию.
Давайте более подробно разберем реакцию между ядрами урана-235 и нейтронами. При этой реакции на каждый израсходованный нейтрон появляется два или три новых. Однако необходимо учесть несколько обстоятельств.
Во-первых, образуются «быстрые» нейтроны, обладающие большой энергией, и, чтобы они могли взаимодействовать с новыми ядрами урана-235, их необходимо замедлить.
Во-вторых, природная смесь изотопов урана содержит в основном изотоп с массовым числом 238, который тоже может взаимодействовать с нейтронами (см. уравнение на стр. 310).
И, в-третьих, если количество урана, принимающего участие в ядерной реакции, невелико, то образующиеся нейтроны могут на своем пути не встретить ни одного атома урана-235 и улететь за пределы уранового блока, так и не совершив больше ни одного деления.
Очевидно, все эти факторы необходимо учитывать, чтобы цепная реакция деления протекала успешно.
Казалось бы, проще всего отделить уран-235 от урана-238. Тогда в большой массе вещества нейтроны уже не смогут вылететь за пределы уранового блока, не совершив по пути ни одного деления. Не нужно беспокоиться и о замедлителе нейтронов: сами ядра урана справлялись бы с этой задачей.
Но уран-235 выделить в совершенно чистом виде крайне трудно. Ведь для разделения изотопов нельзя воспользоваться химическими методами и приходится опираться лишь на очень незначительную разницу в их физических свойствах. Кроме этого, поскольку количество нейтронов при делении возрастает лавинообразно, нет никакой возможности управлять такой реакцией. Наш кусок урана моментально бы взорвался, как только бы мы превысили его критическую[7] массу.
Именно на таком принципе основана атомная бомба. Берут два куска урана (обогащенного изотопом 23592U) с массами меньше критической, но с суммарной массой, превосходящей критическую, и помещают на некотором расстоянии друг от друга. В определенный момент времени при помощи специального механизма оба куска урана сдвигаются, происходит быстрое увеличение числа нейтронов (а следовательно, актов деления) и взрыв.
Тут мы должны немного отвлечься от нашей основной цели и рассказать об одном важном свойстве, которым обладают ядра атомов химических элементов. В настоящее время известно, что ядро любого атома имеет диаметр 10–13–10–12 квадратных сантиметра. Поэтому площадь поперечного сечения ядра можно для всех ядер принять равной приблизительно 10–24 сантиметра. Эта единица в ядерной физике получила специальное название «барн». Сам нейтрон имеет примерно такую же площадь поперечного сечения.
И вот при изучении взаимодействия нейтронов с различными ядрами ученые подметили интересную особенность. Оказалось, что ядра различных элементов при взаимодействии с нейтронами ведут себя неодинаково: одни как бы уменьшаются в размере при приближении к ним нейтрона, а другие становятся «толще».
Попробуем объяснить это явление нагляднее. Пусть мы стреляем в пятикопеечные монеты, лежащие плашмя на столе на некотором расстоянии друг от друга, шариками, имеющими диаметр, одинаковый с пятикопеечными монетами. Здесь возможны только два варианта: некоторые шарики попадут в монеты, а некоторые — в промежутки между ними.
Не то происходит при взаимодействии ядер с нейтронами. Допустим, что расположенные плашмя на столе пятикопеечные монеты вдруг стали на ребро — ведь тогда значительно больше шариков попадет на пустое место, чем в них. Можно представить, что наши пятикопеечные монеты при приближении к ним шариков вдруг стали расти и выросли до размеров блюдца или тарелки. Тогда почти все шарики попадут в них и лишь немногие — на непокрытую монетками часть стола.