Поэтому давайте еще раз вспомним некоторые особенности насканских фигур, которые свидетельствуют о той же математической логике, что и у пиктограмм на полях. И там, и там правильные геометрические построения. В Наске это идеальная прямолинейность, часто встречающаяся параллельность прямых, логарифмические спирали, синусоиды и другие зигзаги. А идеальное сопряжение кривых в рисунках животных, математическое программирование контуров рисунков относительно секущей прямой или относительно начального крючка? Почему и зачем столько застывшей математики на грунте пустыни? Причина это или следствие? И что такое, собственно говоря, математика?
Существует две точки зрения на математику как объективную реальность. Одна из них рассматривает математику как придуманные человеком формализованные представления о механизмах, законах природы. Другая точка зрения рассматривает математику как объективно существующую в природе, входящую во все ее механизмы и процессы, независимо от людей, от их сознания. Мне представляется ближе к истине взгляд Г.М. Идлиса на математику как "адекватный язык
Я уже писала, что одно из первых и самых сильных впечатлений от насканских фигур вызвала у меня красота линии, описывающей контур паука. Все стало на свои места, когда в одном из интервью Мария Райхе рассказала, что поиски метрической единицы привели ее к неожиданному результату. Она установила, "…что ни одна кривая линия ни одного из рисунков не выполнена бездумно. Все они сопрягаются между собой и с прямыми линиями по строгим геометрическим законам". Мои первые ощущения красоты и гармонии были тем начальным импульсом, который привел к поискам математических закономерностей в рисунках и схемах линий на плато Наска.
Взгляните на ход кривых крайней, незамкнутой лапы паука на рисунке, на то место, где начинается и заканчивается рисунок, переходя в две параллельные прямые. Красота перехода напоминает изгиб хоккейной клюшки, профиль которой выполняется по определенным расчетам прочностных характеристик. Обратите внимание, что сопряжение внутренней и внешней линий лапки с прямыми выполнено разными по величине радиусами. Радиус сопряжения внутренней линии меньше, внешней больше. А причина в том, что, во-первых, внутренняя линия длиннее (так как ниже расположена прямая) и, во-вторых, она еще и изгибается, чтобы быть параллельной контуру соседней лапки. Поэтому-то угол сопряжения между и ней и прямой острее (соответственно, и радиус дуги сопрягающей кривой меньше), по сравнению с углом, который составляет внешняя линия лапы со своей прямой. Я описала подробно этот небольшой пример с целью показать, что каждая деталь рисунка, даже его начало и конец, выполнены абсолютно правильно математически. И это не случайность, а закономерность, которой подчинены все контуры изображений.
Учитывая математическую логику, можно заметить множество искажений, внесенных по незнанию художниками-ретушерами при подготовке иллюстраций фигур Наски. Например, по моему убеждению, на большинстве изображений небольшой, но очень красивой насканской птички колибри изгиб между второй и последней (от клюва) синусоидой снизу прорисован слишком глубоко внутрь. Это становится очевидным, если учесть, что математической гармонии подчинена не только сама линия контура, но и огибающие (касательные) синусоидальных элементов оперения, из которых визуально формируется туловище птицы.