Но очень скоро ученые убедились, что они могут справиться лишь с крайне незначительным числом таких уравнений. Скрытую в них неизвестную величину не удавалось порой выразить никакой комбинацией математических функций. Уж не погоня ли это за призраком? Быть может, уравнения эти в принципе неразрешимы? Такие сомнения были отметены знаменитым французским математиком Огюстеном Коши, который в первой половине XIX века строго доказал, что при известных условиях всегда существует решение дифференциального уравнения. Подстегиваемые твердым убеждением, что искомое существует, ученые тщетно пытались отлить его в какую-нибудь знакомую математическую форму. Решение ускользало, как неясная мысль, которую не удается высказать словами. Слишком беден был математический язык науки, слишком скуден запас функций на складе математики. В дополнение к хорошо известным элементарным функциям уже были открыты и изучены некоторые новые, например гамма-функции, зета-функции, цилиндрические функции. В начале XIX века к ним присоединился новый класс функций — эллиптических. Но среди них не находилось подходящих, в которых могло бы воплотиться все богатство решений дифференциальных уравнений. Математики познали «муки слова», которые до сих пор считались уделом мастеров поэзии и прозы.
Такую картину застал Анри Пуанкаре, когда он занялся теорией дифференциальных уравнений. Изо дня в день он ходит в университет, читает лекции, ведет занятия, принимает экзамены, гуляет по городу, встречается с немногочисленными знакомыми, почти автоматически выполняет массу неизбежных повседневных дел и терпеливо и неотступно вынашивает свои идеи. Цель ясна, да и не ему одному, но не видно к ней никаких подступов. Один за другим отпадают рождающиеся в его мозгу варианты, такие заманчивые и многообещающие на первый взгляд, но не выдерживающие сколько-нибудь пристального критического рассмотрения.
Задумчиво перелистывая как-то математический журнал, Анри заинтересовался одной статьей. Немецкий математик Лазарь Фукс тоже работает над теорией дифференциальных уравнений и много преуспел в этой области. Анри не нужно повторно читать статью, он и так сумел схватить самую ее суть. Одна мысль автора захватила его воображение: построить функции, через которые выражаются решения дифференциальных уравнений, как выражаются решения алгебраических уравнений через абелевы трансцендентные функции. Анри словно заглянул в затянутый туманной дымкой, неясный, но внушающий надежду мир. Не попытаться ли расширить таким образом наличный состав математических функций, пополнить их новыми функциями, которые позволили бы наконец выразить искомые решения дифференциальных уравнений? Он тщательно анализирует выводы немецкого математика, проверяет его выкладки и доказательства, находит в них ряд сомнительных мест. Попутно у него рождаются собственные идеи и догадки, которые тоже требуют проверки.
Как раз в это время завершался срок подачи работ на конкурс «Гран-при» по математике, объявленный Академией наук. Тема конкурса была как нельзя более подходящей: усовершенствовать в некоторых пунктах теорию интегрирования линейных дифференциальных уравнений. Забыта тетрадь с неоконченным романом, который Анри дописывал первое время после переезда в Кан. Отныне он одержим только одной идеей, которой отдает все свои силы и время. Призрачный, туманный мир все больше проясняется перед его внутренним взором. Уже 28 мая Пуанкаре представляет на конкурс свой мемуар,[10] содержащий анализ и дальнейшее развитие идей, изложенных Л. Фуксом.
Большой приз по математике за 1880 год присудили Жоржу Альфану, работа Пуанкаре была для этого еще слишком незрелой и слишком поспешной. Ведь он только коснулся благодатного источника, породившего в нем могучий каскад идей. В его мемуаре лишь эскизно намечался тот грандиозный план, который столь блистательно был осуществлен им в последующие годы. Но оригинальность и плодотворность его идей не ускользнули от опытного, проницательного взора Шарля Эрмита. В своем докладе по работам, поданным на конкурс безымянными, он особо отметил исследование, девизом которого служило латинское изречение. Глава французской школы математиков призывал неизвестного автора неуклонно следовать по избранному им пути, который представлялся ему в высшей степени обнадеживающим. Это была работа Анри Пуанкаре.
Диалог с математиком из Гейдельберга