Читаем Простые числа полностью

ДИКОВИННЫЕ ЧИСЛА

Число 313 изображено на номерном знаке автомобиля Дональда Дака. Оно обладает любопытным свойством палиндрома: его можно читать слева направо и справа налево как в десятичной системе счисления, так и в двоичной. Это единственное трехзначное простое число с таким свойством: 313 (в десятичной системе) = 100111001 (в двоичной системе). Кроме того, число 100111001 в десятичной системе счисления является простым.

Существует много простых чисел со странными свойствами. Например, «репьюниты» (от repeated unit — «повторенная единица»), которые состоят из длинных последовательностей единиц. Число 11111111111111111111111 (двадцать три единицы) является простым. В принципе, это просто диковинки, хотя в один прекрасный день эти числа могут стать частью теоремы или гипотезы, имеющей некую ценность в математике. Еще одна любопытная последовательность основана на числе 91, которое является составным (91–13 x 7). Если в середину этого числа вставлять последовательности нулей и девяток, то полученные числа чередуются, являясь то простыми, то составными:

9901 — простое;

999001 — составное;

99990001-простое;

9999900001 — составное;

999999000001 — простое;

99999990000001 — составное;

9999999900000001 — простое;

999999999000000001 — составное.

К сожалению, следующее число 999999999990000000001 также является составным!

* * *

Продолжение следует…

Мы видели, как математики, такие как Мерсенн, Ферма, а иногда даже сам Эйлер, искали практические инструменты для работы с числами. Это в некоторой степени подрывало становление строгой теории. Доказательства едва упоминались, но результаты продолжали использоваться. Гаусс начал новую эру в истории математики, настояв на том, что приведение строгих доказательств должно быть главной целью.

Тем не менее с простыми числами мы снова, казалось бы, опираемся на эмпирический подход. Мы используем недоказанные теоремы и полагаемся на результаты, если знаем, что вероятность ошибки очень мала. Мы действуем как Ферма, но даже не пытаемся прятать гипотетические доказательства. Мы можем так делать, потому что, во-первых, имеем огромные возможности благодаря компьютерным алгоритмам, а во-вторых — огромную потребность в больших простых числах.

В чисто теоретическом смысле можно сказать, что простые числа продолжают сопротивляться усилиям математиков. История их исследований в значительной степени является историей неудач. Наибольший успех был с дзета-функцией Римана, но мы все-таки понимаем, что это лишь частичный успех. Эйлер, который был великим математическим провидцем, не испытывал особенно оптимистичных чувств по поводу наших шансов понять эти неуловимые числа: «Математики уже давно тщетно пытаются найти закономерности в последовательности простых чисел, но у меня есть основания полагать, что это тайна, в которую человеческий разум никогда не сможет проникнуть».

<p>Приложение</p><p>Доказательства</p>1. Доказательство основной теоремы арифметики

Теорема утверждает, что любое натуральное число, отличное от 1, может быть единственным способом выражено в виде произведения простых чисел. Сначала мы должны объяснить, почему единица не считается простым числом.

Существует несколько причин, но наиболее очевидным является тот факт, что для числа 1 теорема не имеет места, так как оно может быть разложено на множители несколькими способами:

1 = 1 х 1 = 1 х 1 х 1 = 1 х 1 х 1 х 1 = …

С этой оговоркой мы можем доказать теорему в два этапа. Сначала покажем, что число может быть представлено в виде произведения, а затем — что это можно сделать единственным способом.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги