Читаем Простые числа полностью

С другой стороны, тени могут быть очень обманчивы, или их не так уж легко можно интерпретировать. Например, рассмотрим объект, который при освещении справа отбрасывает тень в форме круга. При освещении снизу его тень будет треугольная, а при освещении сверху — прямоугольная. Существует ли такой трехмерный объект? Если да, то он может иметь очень странную форму!

Возникает вопрос: существует ли связь между различными проекциями объекта, которая позволяет определить его трехмерную форму? Ответ был дан в 1986 г. Кеном Фалконером, преподавателем математики Сент-Эндрюсского университета. Его теорема гласит: нет, в общем случае никакой связи нет.

Что же нам делать, если мы хотим знать, какую форму имеет объект в четырехмерном пространстве? Мы никогда не сможем увидеть его точную форму, потому что даже если бы мы могли изобразить его, у нас нет возможности его воспринимать. Однако существуют аналитические методы определения некоторых геометрических характеристик объекта.

Возвращаясь к примеру, в котором мы были двумерными существами, покажем методы, с помощью которых такие существа могут определить, как выглядит сфера. Идея заключается в том, чтобы рассмотреть сечения сферы при пересечении ее с плоскостью, в которой мы живем и из которой мы эту сферу наблюдаем. Когда сфера просто касается нашей плоскости, мы видим лишь точку. Потом появляются концентрические круги, которые по мере прохождения сферы через плоскость сначала расширяются, а потом сужаются, пока снова не превратятся в точку.

Следует подчеркнуть, что в этом примере мы четко представляем ситуацию, потому что мы в состоянии воспринимать трехмерные объекты, чего нельзя сказать о нашем восприятии объектов в четырехмерном пространстве. Тем не менее, пример иллюстрирует то, что происходит в месте пересечения объекта и нашей плоскости. Этот момент очень важен, поскольку он тесно связан с так называемыми нулями функции.

Например, выражение — (5x/2) + 5 = 0 можно легко превратить в функцию, записав в виде:

γ = — (5x/2) + 5

Если мы построим ее график, то получим прямую линию. Точка пересечения этой линии с горизонтальной осью (х = 2) является решением уравнения у = 0:

Аналогично если у нас есть квадратное уравнение х2 + х — 2 = 0 и мы построим график функции f(x) = х2 + х — 2, то увидим, что он пересекает ось X (у = 0) в двух точках, которые являются решением уравнения: х = 1 и х = —2.

Если мы обобщим задачу на три измерения, то, например, уравнение х + у2 — 4 = 0 представляется функцией f(х, у) = х2 + у — 4, графиком которой является параболоид. Его пересечение с плоскостью XY дает окружность с радиусом 2, как видно на рисунке на следующей странице. Все точки этой окружности являются решением нашего уравнения.

* * *

КУЛЬТУРНОЕ НАСЛЕДИЕ

Если бы мы дали такое определение: «Функция — это количество, состоящее из переменной и произвольных постоянных», мы бы вряд ли сдали экзамен по элементарной математике, так как такое определение показывает, что у нас нет ясного представления о функции. Однако эта фраза почти дословно встречается в одном из сочинений величайшего математика XVIII в. Якоба Бернулли. На самом деле формулировка определения функции — не такая уж простая задача, с чем согласится любой школьник. Этот факт свидетельствует о чрезвычайной ценности математики как культурного наследия.

* * *

Таким образом, когда мы используем описанный выше трюк, чтобы «увидеть» форму четырехмерного объекта, на самом деле мы хотим лишь получить четкое представление о том, как четырехмерный объект пересекается с трехмерным пространством. Это не даст нам точного представления о форме — да мы и знаем, что для нас это невозможно, — но это даст нам решения соответствующего уравнения.

И, как мы увидим в следующей главе, это именно то, что предложил Риман, когда анализировал дзета-функцию, которая в конечном итоге поможет навести порядок во множестве простых чисел.

<p>Глава 6</p><p>Две стороны медали</p>

Немецкий математик Бернхард Риман (1826–1866) был образцом математической строгости, а индиец Сриниваса Рамануджан (1887–1920) является примером торжества чистейшей интуиции. Они оба занимались простыми числами, и оба имели успехи и неудачи. В любом случае, их жизнь и научная деятельность ярко иллюстрируют два типа математической гениальности.

Бернхард Риман
Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги