В течение всего этого периода Геттинген был тихой провинциальной заводью, освещаемой главным образом присутствием Гаусса. Момент политической известности университета пришелся, как уже упоминалось, на 1837 год, когда была уволена «геттингенская семерка». Главным результатом этого стала потеря университетом части своего престижа. Великим центром математических исследований оставался Париж, но при этом быстро набирал силу Берлин. В Париже Коши и Фурье произвели пересмотр анализа, заложив основы современного подхода к пределам, непрерывности и дифференциальному и интегральному исчислению. В Берлине новых успехов добились Дирихле в арифметике, Якоби в алгебре, Штайнер в геометрии и Эйзенштейн в анализе. Любой, кто в 1840-х годах желал серьезно заниматься математикой, должен был находиться в Париже или Берлине. Вот почему молодой Бернхард Риман, которому весной 1847 года исполнилось 20 лет, не удовлетворенный уровнем обучения в Геттингене и всеми силами жаждавший заниматься серьезной математикой, отправился в Берлин. Он учился там два года, в течение которых огромное влияние на него оказал Лежен Дирихле — человек, который поднял Золотой Ключ в 1837 году. Дирихле испытывал личную привязанность к застенчивому, задавленному бедностью молодому Риману, выказывая к нему отношение, на которое Риман, выражаясь словами Генриха Вебера, «отвечал почтительной благодарностью».
Вернувшись в Геттинген после пасхальных каникул 1849 года, Риман принялся за свою диссертацию под руководством самого Гаусса. Ясно, что он рассчитывал стать преподавателем в университете. Однако путь к этой цели был неблизкий. Чтобы преподавать в Геттингене, необходимо было не только защитить диссертацию, но и получить еще более высокую квалификацию, так называемую
С самого начала вместе с математикой Риман записался на ряд курсов по физике и философии. Эти предметы были обязательными для всех, кто желал преподавать в гимназии, к чему в основном и свелись бы перспективы карьеры для Римана, если бы он не сумел получить должность университетского преподавателя. Выбирая эти курсы, он, надо полагать, хотел подстраховаться. Однако он проявил глубокий интерес к обоим предметам, так что, вероятно, немалую роль при выборе сыграли и его личные склонности. Обстановка в Геттингене к этому времени улучшилась. Физик Вильгельм Вебер — один из членов «геттингенской семерки», уволенный в 1837 году, — вернулся в университет и снова стал там преподавать; в политическом климате наступила заметная оттепель. Старый друг и коллега Гаусса — они вдвоем изобрели электрический телеграф — Вебер читал курс экспериментальной физики, который посещал и Риман.[64]
Эти пять лет неоплачиваемой научной работы должны были даться Бернхарду Риману нелегко. Он находился вдали от дома; от Геттингена до Квикборна было 120 миль, что означало двухдневное путешествие, столь же неудобное, сколь и дорогое. Однако он все же не был в полном одиночестве: в 1850 году в университет прибыл Рихард Дедекинд. Дедекинду было 19 лет — на пять меньше, чем Риману, — и он также планировал написать диссертацию. Из биографического очерка, написанного Дедекиндом и включенного в «Собрание трудов» Римана, явствует, что он питал приязнь и симпатию к своему старшему коллеге, а также глубоко восхищался его математическими способностями; несколько труднее решить, каковы в данном случае были чувства самого Римана.
Оба они защитили свои диссертации с интервалом в несколько месяцев — Риман в декабре 1851 года, а Дедекинд на следующий год. Обоих экзаменовал Гаусс, которому к тому моменту шел восьмой десяток, что не помешало ему сохранять исключительную чуткость к редким математическим талантам. По поводу диссертации, представленной молодым Дедекиндом, еще не достигшим своей математической зрелости, Гаусс написал отзыв, который лишь едва выходил за рамки сухого официального одобрения. Но по поводу диссертации Римана он разразился — а Гаусс был человеком, который нечасто расточал похвалы, — таким пассажем: «Существенная и ценная работа, которая не просто удовлетворяет всем требованиям, предъявляемым к докторским диссертациям, но и намного превосходит их».