Читаем Простая одержимость полностью

3-е правило наводит нас на мысль о том, что же должны означать дробные степени. Как можно поступить с величиной x1/3? Например, возвести ее в куб, тогда по 3-му правилу должно получиться просто x. Значит, x1/3 есть просто кубический корень из x. (Определение «кубического корня из x»: это число, куб которого равен x). 3-е правило теперь говорит нам, какой смысл имеет всякая дробная степень; x2/3 — это кубический корень из x, возведенный в квадрат (или, что одно и то же, кубический корень из x2).

6-е правило действий со степенями:

хm/n есть корень n-й степени из хm.

Поскольку 12 — это 3×4, получаем, что 125 равно (3×4)×(3×4)×(3×4)×(3×4)×(3×4). Это можно переписать как (3×3×3×3×3)×(4×4×4×4×4). Короче говоря: 125 = 35×45. Такое верно и в общем случае:

7-е правило действий со степенями:

(x×y)n = xn×yn.

А что насчет возведения x в иррациональную степень? Что могло бы означать 12√2, или 12π, или 12e? Здесь мы снова попадаем в царство анализа. Вспомним про ту последовательность из главы 1.vii, которая сходилась к √2. Она выглядела так: 1/1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, … Продолжая эту последовательность достаточно далеко, можно подобраться к √2 сколь угодно близко. А из 6-го правила, которое говорит о значении всякой дробной степени, понятно, что же представляет собой число 12, возведенное в каждую из этих дробных степеней. Разумеется, число 121 равно просто 12, а 123/2 — это квадратный корень из 12 в кубе; 41,569219381…. Далее, 127/5 — это корень пятой степени из 12 в седьмой степени, что равно 32,423040924…. Таким же образом, 1217/12 равно 33,794038815…, 1241/29 равно 33,553590738…, 1299/70 равно 33,594688567… и т.д. Как мы видим, эти дробные степени числа 12 сходятся к некоторому числу — на самом деле к числу 33,588665890…. Поскольку сами дроби при этом сходятся к √2, очень похоже на правду, что 12√2 = 33,588665890….

Итак, задавшись положительным числом x, можно возводить его вообще в любую степень — положительную, отрицательную, дробную или иррациональную. При этом будут выполняться приведенные выше правила действий со степенями, поскольку мы ввели определения таким образом, чтобы именно это и гарантировать! На рисунке 5.1 показаны графики функций xa для различных чисел a в интервале от −2 до 8. Отдельно отметим нулевую степень х0, представляющую собой горизонтальную прямую на высоте 1 над осью x — то, что математики называют «постоянной функцией» (а медсестры в реанимации называют «остановкой»). Для любого аргумента x значение этой функции равно 1. Стоит еще обратить внимание, как быстро возрастают целочисленные степени x2, x3, x8, а также — что имеет более прямую связь с главной темой этой книги — как медленно возрастают дробные положительные степени, такие как x0,5.

Рисунок 5.1. Степенные функции xa для различных чисел a.

III.

Возведение чисел в степени на первый взгляд выглядит похожим на умножение. Умножение сначала представляют как кратное сложение: 12×5 = 12 + 12 + 12 + 12 + 12, затем на следующем уровне сложности объясняется, что такое 12×51/2 где на самом деле содержится кое-что еще, кроме кратного умножения. Похожим образом обстоит дело и с возведением в степень. Определить 125 совсем легко, это кратное умножение: 12×12×12×12×12. Чтобы справиться с , требуются дополнительные объяснения, подобные тем, что предложены в предыдущем разделе.

Как я уже говорил, математики обожают обращать выражения. Скажем, пусть задано выражение величины P через Q. Отлично, давайте посмотрим, можно ли выразить Q через P. И здесь аналогия между умножением и возведением в степень нарушается. Обратить умножение легко: если x = a×b, то a = x:b и b = x:a. Деление полностью решает проблему обращения умножения.

Аналогия нарушается, потому что a×b всегда и без единого исключения равно a×b, но, к сожалению, неверно (за исключением случайных совпадений), что ab = ba (единственный случай, когда это так для целочисленных степеней и не совпадающих a и b — это 24 = 42). Например, 102 есть 100, но 210 есть 1024. Поэтому, если мы собираемся обратить x = ab, то нам понадобятся две разные вещи: способ выразить a через x и b и, отдельно, способ выразить b через x и a. Первое — не проблема. Возведем обе части в степень 1/b и в соответствии с 3-м правилом получим a = x1/b (что согласно 6-му правилу означает, что a есть корень b-й степени из x). Но как же выразить b через x и а? Правила действий со степенями не дают здесь никаких подсказок.

Перейти на страницу:

Все книги серии Элементы

Мозг и душа. Как нервная деятельность формирует наш внутренний мир
Мозг и душа. Как нервная деятельность формирует наш внутренний мир

Знаменитый британский нейрофизиолог Крис Фрит хорошо известен умением говорить просто об очень сложных проблемах психологии – таких как психическая деятельность, социальное поведение, аутизм и шизофрения. Именно в этой сфере, наряду с изучением того, как мы воспринимаем окружающий мир, действуем, делаем выбор, помним и чувствуем, сегодня и происходит научная революция, связанная с внедрением методов нейровизуализации. В книге "Мозг и душа" Крис Фрит рассказывает обо всем этом самым доступным и занимательным образом.УДК 159.9:616.89ББК 88.3+56.14ISBN: 978-5-271-28988-0 (ООО "Издательство Астрель")© Chris D. Frith, 2007All Rights Reserved. Authorised translation from the English language edition published by Blackwell Publishing Limited. Responsibility for the accuracy of the translation rests solely with The Dynasty Foundation and is not the responsibility of John Blackwell Publishing Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, Blackwell Publishing Limited.© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2010© П. Петров, перевод на русский язык, 2010© А. Бондаренко, художественное оформление, макет, 2010© ООО "Издательство Астрель", 2010Издательство CORPUS ®Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Кристофер Фрит , Крис Фрит

Биология, биофизика, биохимия / Биология / Психология / Образование и наука
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Мутанты
Мутанты

Для того, чтобы посмотреть, как развивается зародыш, Клеопатра приказывала вспарывать животы беременным рабыням. Сегодня мы знаем о механизмах, которые заставляют одну-единственную клетку превращаться сначала в эмбрион, после – в ребенка, а затем и во взрослого человека, несравненно больше, чем во времена жестокой египтянки, однако многие вопросы по-прежнему остаются без ответов. Один из основных методов исследовать пути формирования человеческого тела – это проследить за возникающими в этом процессе сбоями или, как говорят ученые, мутациями. Именно об этих "неполадках", приводящих к появлению сиамских близнецов, двухголовых ягнят и прочих мутантов, рассказывает в своей увлекательной и порой шокирующей книге британский биолог Арман Мари Леруа. Используя истории знаменитых "уродцев" в качестве отправной точки для своих рассуждений, автор подводит читателя к пониманию сложных законов, позволяющих человеческим телу на протяжении многих поколений сохранять относительную стабильность, оставаясь при этом поразительно многообразным.УДК 575-2ББК 28.704ISBN 978-5-271-24665-4 (ООО "Издательство Астрель")© Armand Marie Leroi, 2003© Фонд Дмитрия Зимина "Династия", российское издание, 2009© Е. Година, перевод на русский язык, 2009© А. Бондаренко, оформление, 2009Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Арман Мари Леруа

Биология, биофизика, биохимия

Похожие книги