B основе построения всей классической физики лежат вещественные числа, такие как 22,45915771836…; поскольку такие числа не имеют замкнутого вида, требуется бесконечная последовательность десятичных разрядов, чтобы теоретически достичь полной точности. Реальные физические измерения, однако, носят приближенный характер, давая что-то вроде 22,459. Это рациональное число, равное 22 459/1000. Все, что есть в физическом эксперименте, можно, таким образом, выразить с помощью рациональных чисел — элементов из Q. Чтобы перейти от мира эксперимента к миру теории, надо пополнить поле Q (см. главу 11.v). Другими словами, требуется его расширить таким образом, чтобы для всякой имеющей предел бесконечной последовательности чисел из Q этот предел лежал бы или в самом Q, или в поле-расширении. Обычный и естественный способ такого пополнения приводит к вещественным числам R и комплексным числам С.
Однако в алгебраической теории чисел имеются и другие возможности для пополнения Q. В 1897 году прусский математик Курт Хензель[183], работая над определенной задачей в теории алгебраических полей, ввел целое новое семейство объектов, подобных полю чисел вида а + b√2, которое мы рассматривали в главе 17.ii. Эти объекты называются p-адическими числами. Для каждого простого числа p имеется по одному из этих экзотических созданий, содержащих бесконечно много элементов. Кирпичики, из которых строится такое поле, — это обсуждавшиеся в главе 17.ii «циферблатные» кольца размера p, p2, p3, p4 и т.д. В моих обозначениях это кольца CLOCKp, CLOCKp2, CLOCKp3, …. Например, поле 7-адических чисел построено из CLOCK7, CLOCK49, CLOCK343, CLOCK2401, …. Помните приводившуюся ранее иллюстрацию того, как конечное поле можно использовать для построения бесконечного поля? Так вот, здесь используется бесконечное число конечных колец для построения нового бесконечного поля!
Поле p-адических чисел обозначается символом Qp. Таким образом, имеются поле Q2, поле Q3, поле Q5, поле Q7, поле Q11 и т.д. Каждое из них — полное поле: Q2 есть поле 2-адических чисел, Q3 есть поле 3-адических чисел и т.д.
Как можно догадаться уже из обозначений, p-адические числа чем-то похожи на обычные рациональные числа. Однако поле Qp богаче и устроено более сложно, чем поле Q, и в некоторых отношениях скорее напоминает поле вещественных чисел R. Как и R, поле Qp можно использовать для пополнения поля Q.
Здесь вы можете высказать определенное недоумение: «Все отлично, но ведь было сказано, что поле Qp этих странных новых объектов — р-адических чисел — существует для всякого простого числа p и что любое Qp позволяет пополнить поле Q; так какое же из них надо предпочесть? Q2? Q3? Q11? Q45827? Какое простое число должен выбрать профессор Конн, чтобы устроить свой фокус — перекинуть мост между простыми числами и физикой динамических систем?»
Ответ таков: их все! Дело в том, что имеется алгебраическое понятие, называемое аделем, которое охватывает в свои широкие объятия все Qp для всех простых чисел 2, 3, 5, 7, 11, …. И там же оказываются и вещественные числа! Адели построены из Q2, Q3, Q5, Q7, … и R способом, напоминающим тот, каким p-адические числа построены из CLOCKp, CLOCKp2, CLOCKp3, …. Если угодно, адели находятся на один уровень абстракции выше p-адических чисел, которые сами располагаются на один уровень абстракции выше, чем рациональные числа.
Если от всего этого у вас кружится голова, то достаточно сказать, что имеется класс суперчисел, являющихся одновременно 2- адическими, 3-адическиими, 5-адическими, … и при этом еще и вещественными. В каждое из этих суперчисел вложены все простые числа.
Без сомнения, адель — довольно заумное понятие. Однако нет на свете ничего настолько заумного, чтобы оно рано или поздно не пробило себе дорогу в физику. В 1990-х годах математические физики взялись за создание адельной квантовой механики, где реальные измерения в эксперименте, приводящие к рациональным числам, воспринимаются как проявление этих причудливых созданий, вытащенных из темных глубин математической бездны.
Пространство такого типа — адельное пространство — и построил Ален Конн в качестве площадки, где может резвиться его риманов оператор. Из-за того что оно адельное, в него, так сказать, встроены все простые числа. Действующие на этом пространстве операторы по необходимости основаны на простых числах. Теперь, я надеюсь, стало немного понятнее, как же можно построить риманов оператор, собственные значения которого являются в точности нетривиальными нулями дзета-функции, а в пространство, на котором он действует, простые числа встроены тем способом, который я пытался описать, но которое при этом имеет отношение к реальным физическим системам — реальным наборам субатомных частиц.