И у них тоже будет звездное небо над головой! Единственно, чего у них не будет, так это множества других галактик, видимых в телескопы. Будут видны только погасшие или чуть тлеющие галактики местного скопления, которые не разлетелись на безнадежные расстояния из-за того, что оказались гравитационно связанными в первые миллиарды лет. Космический телескоп «Хаббл» там окажется не столь полезным. А всё великолепие молодой Вселенной будет полностью закрыто для наблюдения любыми инструментами из-за ускоренного расширения пространства.
1.2. Пример возврата бурной молодости галактик в результате столкновения. Маленькая галактика (справа, вероятно, та, что голубая), сотни миллионов лет назад пролетела через большую галактику слева и вызвала в ней круговую ударную волну в диске, сжимающую газ с пылью, дающую толчок образованию миллиардов звезд. Яркие звезды быстро прогорают, отчего светящееся кольцо тонкое, но за ним остаются менее яркие звезды типа Солнца. Подобные эпизоды возрождения будут изредка происходить и тогда, когда галактики полностью погаснут. Снимок космического телескопа «Хаббл» (NASA) с hubblesite.org
Итак, мы знаем, что «умирание» Вселенной будет очень долгим, что ее температура будет только падать, знаем, что в обозримое время не случится тотального апокалипсиса типа коллапса Вселенной. Есть экзотические варианты теории, где Вселенную когда-нибудь нескоро ждет внезапный конец («большой разрыв» или коллапс), но в простых незатейливых вариантах теория предсказывает для Вселенной очень долгое будущее. Однако мы сильно забежали вперед — из XIX века в конец XX. Вернемся назад.
Третья проблема вечной неизменной Вселенной — гравитационная неустойчивость. Любой объем вещества стремится сжаться под действием гравитации. Если в среде давление мало, то малейшие неоднородности плотности начинают расти — чем дальше, тем быстрее. Сжатие останавливается, когда давление или разброс скоростей объектов сжимающейся системы уравновешивает гравитацию. Всё, что мы видим вокруг себя, уже прошло стадию гравитационной неустойчивости и пришло к равновесию: Солнце уравновешено давлением газа, Солнечная система — движением планет, галактика — движением звезд, скопление галактик — движением галактик. А дальше — проблема! В XIX веке ничего не знали про скопления галактик и крупномасштабную структуру Вселенной. Но теоретически было понятно, что от проблемы не уйти, — чем больший объем берем, тем дольше развивается неустойчивость, но тем большее давление или разброс скоростей требуется, чтобы остановить сжатие. В конце концов, приходим к какому-нибудь парадоксу, типа того, что для стабилизации сжимающейся системы требуются скорости, превышающие скорость света (это в рамках ньютоновской механики, а на современном языке это означало бы формирование черной дыры).
Несмотря на перечисленные проблемы, многие ученые и тем более философы долго верили в старую парадигму. Про парадоксы все знали, но думали, что как-нибудь рассосется — наука развивается и найдет лазейки из тупика.
2. Старая космология жителей подледного океана Европы
Мы находимся в довольно благоприятном положении для обозрения Вселенной. Атмосфера Земли прозрачна, космос тоже (что не само собой разумеется — в Галактике довольно много облаков пыли). Тем не менее, пытаясь понять, как устроена Вселенная, откуда она взялась и что это такое, мы уперлись в некие пределы, о которых пойдет речь ниже. Интересно попытаться представить картину мира тех, кто находится в худших условиях, у кого пределы находятся перед самым носом.
В Солнечной системе есть несколько интересных мест, о которых с надеждой говорят как о возможном прибежище внеземной жизни. Одно из них — спутник Юпитера Европа, точнее, ее подледный океан. Аналогичные океаны, вероятно, есть у спутников Сатурна — Титана и Энцелада.
Европа — второй после Ио по удаленности галилеев спутник Юпитера. Радиус орбиты — 671 км (почти вдвое больше, чем у Луны), По размеру Европа почти равна Луне. Покрыта водяным льдом. Местами лёд загрязнен буроватыми минералами, местами он голубой. Есть много доводов в пользу того, что под слоем льда находится слой жидкой воды порядка сотни километров глубиной.
2.1. Серп Европы, снятый «Вояджером-2» (NASA)