Читаем Прорыв за край мира полностью

Как отмечено выше, в 1970-х годах люди не понимали, почему так идеально подогнаны начальные условия Большого взрыва, в частности, почему плотность так близка к критической (Ω ~ 1), что предполагало равенство с точностью до 10-60 в начале Большого взрыва на околопланковских масштабах. А ведь если бы они не были подогнаны так точно, то и нас не было: Вселенная бы уже сколлапсировала или расширялась так быстро, что не успели бы образоваться галактики и звезды. Не возникает ли соблазн привлечь для объяснения факта антропный принцип? Если знать основное содержание этой книги — соблазна не возникает. Но в 1970-х годах никто этого не знал, и время от времени такая идея всплывала: ну, требуется попадание с вероятностью 10-60, но кто мешает предположить, что «попыток сотворения» вселенных было куда больше, чем 1060? Владимир Лукаш отметил в своем интервью, что упование на антропный принцип считалось в школе Зельдовича моветоном. И это правильно: если величина близка к выделенному значению, надо искать рациональное объяснение, а привлекать антропный принцип лишь в самую последнюю очередь, когда всё исчерпано. И в том случае правило сработало: вскоре была сформулирована концепция космологической инфляции, давшая рациональное объяснение близости Ω к единице.

Но осталась другая фундаментальная загадка: близость плотности энергии вакуума к нулю. Сейчас мы знаем, что есть темная энергия с плотностью около 10-8 эрг/см3, или, если выражать в единицах массы, 10-29 г/см3 . Возможно, это и есть плотность энергии вакуума. Мы не имеем рационального объяснения, почему она столь мала. Опять антропный принцип? Мы уже упоминали выше именно эту точку зрения.

Если считать, что плотность энергии ваккума равновероятна от планковского до минус планковского значений, то вероятность получить столь малую величину, 10-123, гораздо меньше, чем случайно получить вселенную с современной плотностью материи, столь близкой к критической. Впрочем, где 1060 вселенных, там и 10123 найдется, чтобы в одной из них вакуум оказался столь слабо тяготеющим, чтобы там смогли возникнуть мы. И есть люди, которые вполне серьезно именно это и утверждают. Но есть и те, кто считает такой подход моветоном и готовы бросить навсегда занятие наукой, если антропный принцип в данном случае окажется единственным возможным объяснением. Автор очень хорошо понимает вторых, но есть одно обстоятельство, которое вроде бы поддерживает точку зрения первых.

Механизм космологической инфляции, ответственный за близость плотности к критической, сделал свое дело гораздо точнее, чем необходимо с точки зрения антропного принципа. Мы бы могли появиться при современном значении параметра Ω ~ 0,1 или Ω = 2. Если бы этот параметр выпадал случайно, мы бы, скорее всего, обнаружили его где-то в этих пределах, заметно отличающимся от 1. Но измерения показывают, что Ω отличается от единицы не более, чем на 0,01. И мы понимаем, это потому, что есть механизм, обеспечивающий равенство Ω = 1 с огромной точностью. Скорее всего, отличие Ω от единицы на много порядков меньше.

А в случае с плотностью энергии вакуума? Антропный принцип требует, чтобы она по абсолютной величине была не больше 10-28 г/см3 (число дано весьма приблизительно), иначе из-за ускоренного расширения не смогли бы образоваться галактики и звезды поколения Солнца. А на самом деле, если трактовать темную энергию как плотность энергии вакуума, то она составляет ~10-29 г/см3 . От механизма, обеспечивающего малую плотность вакуума, мы были бы вправе ждать гораздо меньшей величины. А тут подозрительно близко к тому, что требуется для обитаемости вселенной. Достаточно малая величина, чтобы мы смогли появиться, но не более того: всего порядок разницы. Наводит на мысль, что это действительно может быть результатом случая. И некоторые серьезные ученые принимают этот аргумент. Соблазн при этом довольно велик: отпадает необходимость искать причину малой плотности вакуума: это просто случай, выпавший с вероятностью 10-123 в бесконечном числе вселенных. И над странным энергетическим масштабом темной энергии, никак не связанным с известными масштабами взаимодействий, не надо ломать голову: случай!

Насколько этот подход рационален?

Он был бы более-менее рационален, если наблюдаемое значение плотности энергии вакуума было бы произвольным с точки зрения законов физики и истории Вселенной. Так ли это?

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука