% Решение числовых ребусов
сумма( N1, N2, N) :-
% Числа представлены в виде списков цифр
сумма1( N1, N2, N,
0, 0,
% Перенос справа и перенос влево равны 0
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], _ ).
% Все цифры доступны
сумма1( [ ], [ ], [ ], 0, 0, Цифры, Цифры).
сумма1( [D1 | N1], [D2 | N2], [D | N], C1, С, Циф1, Циф) :-
сумма1( Nl, N2, N, C1, C2, Циф1, Циф2),
суммацифр( Dl, D2, C2, С, Циф2, Циф).
суммацифр( Dl, D2, C1, D, С, Циф1, Циф) :-
удалить( D1, Циф1, Циф2),
% Выбор доступной цифры для D1
удалить( D2, Циф2, Циф3),
% Выбор доступной цифры для D2
удалить( D, Циф3, Циф),
% Выбор доступной цифры для D
S is D1 + D2 + C1,
D is S mod 10,
С is S div 10.
удалить( A, L, L) :-
nonvar( A), !.
% Переменная А уже конкретизирована
удалить( А, [А | L], L).
удалить( А, [В | L], [В | L1]) :-
удалить( A, L, L1).
% Примеры ребусов
ребус1( [D, O, N, A, L, D],
[G, E, R, A, L, D],
[R, O, B, E, R, T].
ребус2( [0, S, E, N, D],
[0, M, O, R, E],
[M, O, N, E, Y].
Рис. 7. 2. Программа для арифметических ребусов.
Иногда этот ребус упрощают, сообщая часть решения в виде дополнительного ограничения, например D равно 5. В такой форме ребус можно передать пролог-системе при помощи сумма1:
? - сумма1( [5, O, N, A, L, 5],
[G, E, R, A, L, 5],
[R, O, B, E, R, T],
0, 0, [0, 1, 2, 3, 4, 6, 7, 8, 9], _ ).
Интересно, что в обоих случаях существует только одно решение, т.е. только один способ заменить буквы цифрами.
Упражнения
7. 1. Напишите процедуру упростить для упрощения алгебраических сумм, в которых участвуют числа и символы (строчные буквы). Пусть эта процедура переупорядочивает слагаемые так, чтобы символы предшествовали числам. Вот примеры ее использования:
?- упростить( 1 + 1 + а, Е).
Е = а + 2
?- упростить( l + a + 4 + 2 + b + с, E).
Е = а + b + с + 7
?- упростить( 3 + х + х, Е).
Е = 2*х + 3
7. 2. Определите процедуру
добавить( Элемент, Список)
для добавления нового элемента в список. Предполагается, что все элементы, хранящиеся в списке, - атомы. Список состоит из всех хранящихся в нем элементов, а за ними следует хвост, который не конкретизирован и служит для принятия новых элементов. Пусть, например, в списке уже хранятся а, b и с, тогда
Список = [а, b, с | Хвост]
где Хвост - переменная. Цель
добавить( d, Список)
вызовет конкретизацию
Xвoст = [d | НовыйХвост] и
Список = [а, b, с, d | НовыйХвост]
Таким способом структура может наращиваться, включая в себя новые элементы. Определите также соответствующее отношение принадлежности.
Посмотреть ответ
Назад | Содержание | Вперёд
Назад | Содержание | Вперёд
7. 2. Создание и декомпозиция термов:
Имеются три встроенные предиката для декомпозиции и синтеза термов: functor, arg и =.. . Рассмотрим сначала отношение =.. , которое записывается как инфиксный оператор. Цель
Терм =.. L
истинна, если L - список, начинающийся с главного функтора терма Терм, вслед за которым идут его аргументы. Вот примеры:
?- f( а, b) =.. L.
L = [f, а, b]
?- Т =.. [прямоугольник, 3, 5].
Т = прямоугольник( 3, 5)
?- Z =.. [р, X, f( X,Y) ].
Z = p( X, f( X,Y) )
Зачем может понадобиться разбирать терм на составляющие компоненты - функтор и его аргументы? Зачем создавать новый терм из заданного функтора и аргументов? Следующий пример показывает, что это действительно нужно.
Рассмотрим программу, которая манипулирует геометрическими фигурами. Фигуры - это квадраты, прямоугольники, треугольники, окружности в т.д. В программе их можно представлять в виде термов, функтор которых указывает на тип фигуры, а аргументы задают ее размеры:
квадрат( Сторона)
треугольник( Сторона1, Сторона2, Сторона3)
окружность( R)
Одной из операций над такими фигурами может быть увеличение. Его можно реализовать в виде трехаргументного отношения