Читаем Проклятые вопросы полностью

В этом номере опубликована статья Николса Блумберхена, в которой он предлагает использовать для усиления и преобразования сверхвысоких частот совершенно неожиданные материалы — фторсиликат никеля и этилсульфат гадолиния. Блумберхен был уже достаточно авторитетным исследователем, чтобы отнестись с большим вниманием к его статье. Соотечественник Лоренца и Гортера, он родился в 1920 году, окончил Лейденский университет, защитил докторскую диссертацию и затем пересёк океан в поисках более широкого применения своих способностей. В Америке его фамилию начали произносить на американский лад, и она зазвучала как Бломберген.

Блумберхен — физик-теоретик, отличающийся чётким и рациональным подходом к задачам и умением выявлять пути экспериментальной проверки и практического применения своих результатов. В этот раз его статья под названием «Квантовый парамагнитный усилитель» имела подзаголовок: «Предложение усилителя нового типа».

Что поражало в этом названии? Слово «квантовый» напоминало молекулярный усилитель Басова, Прохорова, Таунса. Слово «парамагнитный» заставляло связать прибор с работами Гортера и Завойского. Что же Блумберхен взял от одного и что от другого направления? И почему из всех заманчивых возможностей, открытых новым явлением, Блумберхен сосредоточил внимание на одном: усилении радиоволн?

Многие стремились создать квантовые усилители радиоволн. Однако первоначально практические перспективы открывались лишь в диапазоне коротких радиоволн, длиной в несколько десятков метров. Но мало кто надеялся и пытался реализовать эти возможности, ибо было ясно, что новые, сравнительно сложные усилители не могли конкурировать в этом диапазоне с обычными радиолампами и транзисторами.

Блумберхен пошёл своим путем, в котором оказались сплавленными два направления, исходящие из его родного университета. Он предложил применить явление парамагнитного резонанса, предсказанное Гортером и открытое Завойским, и работать в области сверхнизких температур при температуре жидкого гелия, впервые полученного в Лейдене Г. Каммерлинг-Оннесом.

В статье Блумберхена приведены не только уравнения, описывающие действие нового усилителя, но и оценки, показывающие, что такой усилитель должен обладать несравненно большей чувствительностью при приёме слабых сигналов, чем все известные ранее. Физиков особенно заинтересовал один аспект статьи. Автор указывал на радиоастрономию как на область, где применение подобного усилителя наиболее эффективно. Все сразу оценили эту рекомендацию однозначно: возникала возможность осуществить давнее намерение учёных — попытаться принять слабое радиоизлучение из космоса на волне 21 сантиметр, что подтвердило бы реальное существование свободных атомов водорода в космосе.

Блумберхен в своей статье обсуждает работу усилителя, который мог бы принять это радиоизлучение, и обращает внимание на то, что предлагаемый усилитель не только может быть применён в радиоастрономии, но способен также расширить возможности радиолокации.

Примерно через год американский учёный X. К. Д. Сковил с сотрудниками осуществил идею Блумберхена. Их квантовый парамагнитный усилитель, в котором работали кристаллы этилсульфата гадолиния, погружённые в жидкий гелий, обладал всеми свойствами, предсказанными Блумберхеном.

Публикация Сковила открыла путь потоку статей о квантовых парамагнитных усилителях. Разные авторы применяли различные парамагнитные кристаллы, их усилители отличались конструктивными особенностями и длиной усиливаемых волн. Но принцип был единым. Вскоре выяснилось, что наилучшим и наиболее эффективным кристаллом для таких усилителей является все-таки рубин.

Повезло ли Прохорову или тут сработала его прославленная интуиция, но именно на рубине, как мы уже знаем, сосредоточилось его внимание.

Прохоров с группой аспирантов и сотрудников проводил обширные и глубокие исследования парамагнитных свойств рубина, исходя именно из того, что совокупность свойств этого драгоценного кристалла как нельзя лучше удовлетворяет требованиям, возникающим при создании квантовых усилителей дециметрового и сантиметрового диапазона радиоволн.

История создания этих усилителей впервые продемонстрировала, что Прохоров является не обычным кабинетным учёным, а научным работником нового типа, способным не только выдвигать идеи и лично вести сложную исследовательскую работу, но и одновременно выполнять функции учёного-организатора, сплачивающего большие и разнородные коллективы для решения крупной комплексной задачи. Теперь поиски велись во многих научно-исследовательских институтах, причём они были не только экспериментального и теоретического плана, но и конструкторского. Идеи воплощались в приборы нового типа.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука