Количество атмосферного кислорода огромно – 20 % от массы атмосферы Земли, или примерно 1 квадрлн т (1018 кг). Следовательно, существует огромный резервуар органического вещества, который дополняет весь этот свободный кислород. Это другой продукт реакции фотосинтеза, а именно сахар, хотя обычно его называют органическим углеродом. (Углерод, путем выветривания вошедший в горные породы в виде карбонатов, называют неорганическим углеродом.) Бóльшая часть этого органического вещества изолирована от атмосферы, иначе оно в конце концов вступило бы в реакцию со свободным кислородом. На Земле органический углерод легко укрыть, например, на дне океанов или под осадочными породами, которые беспрестанно производятся эрозией постоянно образующихся вулканов и гор. Этого накопленного органического углерода сегодня в несколько тысяч раз больше (в единицах массы углерода), чем в биосфере, которая сама по себе является относительно крошечной системой, непрерывно производящей и потребляющей кислород.
Заслуживает упоминания то, как аэробные организмы используют сахар, чтобы получить энергию в процессе дыхания. Когда сахар (или углеводород) просто сгорает при взаимодействии с кислородом, запас органического углерода из обладающих запасом энергии электронов, возникших в результате фотосинтеза, захватывается кислородом и переходит на более низкий уровень энергии в кислородной атомной структуре или «валентном электронном слое», высвобождая энергию в виде тепла и света. Если же сахар используется аэробным организмом, реакции метаболизма приводят к тому, что электроны органического углерода медленно просачиваются назад к «жадному до электронов» кислороду и создают электрическое напряжение. Его энергия используется для создания АТФ, что поддерживает механизмы жизнедеятельности клетки. Часть накопленной энергии сахара выделяется в виде тепла, что позволяет теплокровным существам оставаться теплыми. И при сгорании сахара, и при его аэробном потреблении, как только к кислороду присоединяется электрон, он уходит с побочным углекислым газом и водой.
Как отмечалось в главе 5, азот составляет большую часть оставшихся 80 % массы атмосферы, представляющей собой резервуар биологических строительных блоков. При этом азот относительно инертен, не так легко вступает в химические реакции. Требуется долгая работа бактерий и архей в океанах и почве, чтобы образовался, например, аммиак, который более крупные организмы, например растения, используют для создания аминокислот. Напрямую мы атмосферный азот не используем. (Хотя производство удобрений, обеспечивающих необходимые для населения Земли урожаи, стало возможным благодаря процессу синтетического связывания атмосферного азота. Открывший его более 100 лет назад немецкий ученый Фриц Габер был удостоен Нобелевской премии по химии.)
На протяжении первых миллиардов лет существования биосферы Земли в ней по большей части преобладали простые одноклеточные прокариоты – бактерии и археи. Сложные клетки, из которых состоят животные, растения и такие сложные одноклеточные организмы, как грибы, амебы и инфузории, возникли около 2 млрд лет назад. Они называются эукариотическими и сильно отличаются от прокариотических клеток. Типичная эукариотическая клетка имеет мембрану, поддерживаемую цитоскелетом, а ее ядро удерживает в себе ДНК, не позволяя ей свободно плавать, и имеет так называемые органеллы – компоненты клетки, необходимые для ее существования. Помимо этого клетки эукариоты могут изменять свою форму и имеют мембраны, чтобы поглощать и есть другие организмы. Но как же эукариоты возникли?
Происхождение эукариот обычно объясняют теорией симбиогенеза, предполагающей, что вначале объединились две прокариоты. Возможно, одна из них поглотила другую или же вторглась в нее: разницы здесь практически нет. Это могли быть археи, «поглощающие» бактерий, или наоборот. По мере того как это происходило, выработались комбинации симбиотического обмена. Аэробные бактерии, способные удалять кислород, потребляя его и используя вместе с сахаром для производства энергии, были бы полезными партнерами для архей, для которых кислород является ядовитым. Фотосинтезирующие бактерии внутри крупных клеток могли бы генерировать сахар для их хозяина. Симбиотические комбинации такого рода могли дать большое эволюционное преимущество в условиях насыщающейся кислородом атмосферы, и поэтому эукариоты смогли выжить.