Экспериментальные данные ДНК-генеалогии – это картина мутаций в нерекомбинантных участках мужской половой хромосомы (на самом деле – и в митохондриальной ДНК, но в этом рассказе речь пойдет только о Y-хромосоме, расчетный и интерпретационный аппарат которой значительно более разработан). Эту картину мутаций ДНК-генеалогия рассматривает как в Y-хромосомах отдельных людей, так и их групп, популяций. Методология новой науки – перевод динамической картины мутаций в хронологические показатели, во времена жизни общих предков популяций, а на самом деле – общих предков древних родов и племен. То есть, фактически производится расчет времен, когда в древности жили эти роды и племена. В свою очередь, построение «карты» этих времен по регионам, материкам, континентам позволяет понять миграционные пути наших предков. В отрыве от археологических, антропологических, лингвистических данных ДНК-генеалогия не столь эффективна, поскольку картина мутаций и хронологические расчеты не привязаны к определенным территориям, и часто допускают множественные толкования. Но в совокупности с данными других исторических и сопряженных наук материалы ДНК-генеалогии приводят к синергизму в выводах, усиливают выводы, подвергают их перекрестной проверке под неожиданными и необычными углами, и в итоге позволяют отвести одни выводы, сделанные преждевременно и некритично, пусть и «устоявшиеся» в науке, и усилить другие.
Мутации, рассматриваемые в ДНК-генеалогии – это или одиночные (как правило) замены нуклеотидов в ДНК, как, например, аденин на цитозин, или цитозин на тимин, или вставки нуклеотидов, или делеции, или мутации более сложные, при которых ошибка копирующего фермента приводит к переносу целого блока нуклеотидов. Это дает или удлинение серии таких блоков на один (редко – сразу на два-три блока), или их укорачивание. Эти мутации наследуются в поколениях, порой в сотнях и тысячах поколений подряд без изменений, или с небольшими вариациями, и тем самым служат надежными, порой «вечными» метками в ДНК.
Мутации первого типа – SNP (Single Nucleotide Polymorphism), или «снипы», обычно очень стабильны, и их для ДНК-генеалогии отбирают только такие, которые случаются только один раз (два раза – максимум) за историю человечества. Поэтому они являются маркерами родов человечества. Эти роды называют «гаплогруппами», каждая из которых состоит из многих выявленных подгрупп, но все подгруппы несут родо-определяющую (или гаплогруппу-определяющую) SNP-мутацию. Всего в мире насчитывают 20 основных родов, обозначаемых буквами латинского алфавита от
Мутации второго типа – STR (Short Tandem Repeat) – значительно более быстрые, и происходят в определенных локусах ДНК (то есть в гаплотипах, которые и есть совокупность выбранных локусов) раз в несколько десятков или сотен поколений. Поэтому гаплотипы ДНК выбирают так, чтобы в них таких локусов было включено как можно больше (но все же оставаясь в рамках практичности). В ранних работах использовались 6-маркерные гаплотипы, затем 12-маркерные, затем 25- и 37-маркерные, а сейчас работа рутинно ведется с 67-маркерными гаплотипами (в академических публикациях, как правило, от 8 до 17 маркерных гаплотипов), а в последние два года – и с 111-маркерными гаплотипами. В 67-маркерных гаплотипах, например, одна мутация происходит в среднем за 8 поколений, в 111-маркерных – за 5 поколений, то есть примерно раз в 125 лет. Для расчетов за «поколение» принимается интервал времени в 25 лет, и на основании этого интервала происходит калибровка констант скоростей мутации «второго типа», то есть мутаций в гаплотипах.
В этом рассказе были определены 20-маркерные гаплотипы, имеющие несколько нестандартный формат, поэтому их расчет проводился по 17 локусам, так называемому Y-filer, суммарная константа скорости мутации которых хорошо известна.