Эти морфологические различия свидетельствуют о том, что эволюция нервных систем позвоночных и беспозвоночных животных происходила в рамках очень несхожих ограничений (Гессе, 1913; Pechenic, 1991). У беспозвоночных с их маленькой нервной системой было бы невозможным преобладание регуляционного эмбрионального развития нервной системы над генетически детерминированным. Это связано с тем, что при регуляционном развитии судьба эмбриональной клетки вероятностна и зависит от межклеточных взаимодействий. В указанном случае требуются некоторый переизбыток эмбриональных нейробластов, их конкурентное поведение при дифференцировке и программированная гибель клеток. Такой переизбыток эмбрионального материала практически невозможен у беспозвоночных. В результате нервная система развивается преимущественно по детерминационному типу. Это означает, что число нервных клеток, их связи и даже ветвление дендритов предопределены генетически. Интересно отметить, что генетическая детерминация развития дрозофилы столь велика, что спустя 700 поколений нейроны имеют идентичное с первым поколением ветвление дендритов.
Рис. I-14. Основные центры нервной системы позвоночных на примере лягушки.
Если попытаться количественно выразить соотношение детерминированных и регуляционных событий в развитии нервной системы беспозвоночных, то оно составит примерно 70 к 30. Понятно, что при таком соотношении практически не остаётся места для морфологической индивидуализации нервной системы. Более того, достаточно жёсткая детерминированность строения создаёт возможность эффективной передачи по наследству разнообразных форм поведения. В связи с этим у беспозвоночных мы встречаем преимущественно инстинктивное поведение, его незначительную индивидуализацию без «высоких» психологических свойств (Pechenic, 1991). Важным функциональным отличием беспозвоночных является нейрогормональная регуляция поведения. Нервная и эндокринная системы образуют интегрированные нейроэндокринные комплексы. У наиболее эволюционно продвинутых видов беспозвоночных в рефлекторные реакции и обработку сенсорной информации входит нейрогормональный этап. Участие нейрогормонального этапа в работе головных ганглиев может различаться, но его значение у беспозвоночных несопоставимо больше, чем у позвоночных животных.
У большинства высших беспозвоночных формируется специальный нейрогормональный орган, расположенный позади головных ганглиев. Эти образования названы нейрогемальным органом, а при слиянии с головными ганглиями или нервами — нейрогемальной зоной. Существование этого центра приводит к тому, что поведение животного при любой активации головных ганглиев начинает контролироваться выделяемыми гормонами нейрогемальной системы. Начавшись с активности нейронов, поведение попадает под контроль гормональных центров и становится более генерализованным, программируемым и предсказуемым. Соотношение влияний на поведение нейрогормональных и нервных комплексов специально не изучали. Однако приблизительная оценка показывает, что у высших беспозвоночных поведение примерно на 85 % контролируется нейрогормонами, а у приматов и человека доля этого влияния не достигает 50 %.
§ 11. Нервная система беспозвоночных
У беспозвоночных диффузно-ганглиозная нервная система с выраженными головными и туловищными ганглиями. Туловищные ганглии обеспечивают местный контроль над вегетативными функциями и моторной активностью. Головные ганглии содержат скопления нейронов, отвечающих за осязание, зрение, обоняние, вкус, слух, электрорецепцию и эндогенную рецепцию (рис I-15). Эти специализированные области