Читаем Происхождение мозга полностью

Эти данные говорят не только о глубоких различиях, но и о сходстве развития и строения нервной системы позвоночных и беспозвоночных. Реконструируя пути усложнения морфологической организации мозга, можно предположить такую последовательность событий. На первом этапе исторического развития нервной системы из клеток эктодермального зачатка появились чувствительные элементы (см. рис. I-16). Специализированные клетки эктодермы обладали одновременно сенсорными и эффекторными функциями. Они рецептировали сигнал, проводили его к эффекторным органам и запускали их реакцию. Эти клетки были связаны между собой и формировали непрерывную сеть, которая не имела выраженных центров (см. рис. I- 12; I-14; I-16). Такой тип организации нервной системы мы встречаем у кишечнополостных. При появлении более сложных поведенческих задач элементы нервной системы стали объединяться в небольшие скопления. По-видимому, это происходило двумя путями. С одной стороны, формировались параллельные ганглии (см. рис. I-16) с синаптическими контактами между телами клеток. Этот примитивный тип концентрации нервных элементов отмечен у свободноплавающих кишечнополостных. С другой стороны, появились скопления нейронов с наружным расположением тел клеток и нейропилем из переплетённых отростков внутри ганглия (см. рис. I-16). Этот тип организации ганглиев оказался достаточно эффективным и сохранился до настоящего времени у большинства беспозвоночных. Такой ганглий обладает рядом преимуществ, которые имеют особое значение для животных с незамкнутой кровеносной системой. Тела его нейронов расположены преимущественно на наружной поверхности, что позволяет поддерживать довольно высокий уровень метаболизма. Через открытую поверхность тел нейронов происходит снабжение питательными веществами, кислородом и отводятся токсичные продукты жизнедеятельности клеток. Нейропиль, находящийся внутри ганглия, даёт возможность формировать синаптокомплексы, обмениваться сигналами и формировать генерализованный ответ на разнообразные воздействия. По-видимому, из этой формы концентрации нервных элементов возникли головные и туловищные ганглии высших беспозвоночных, ганглии и нервная трубка позвоночных (см. рис. I-15; I-16).

В головных ганглиях беспозвоночных сложились два основных типа гистологических структур: островковые скопления тел клеток и стратифицированные грибовидные тела. Островковые скопления тел клеток беспозвоночных практически идентичны подкорковым и стволовым ядрам позвоночных. Организация грибовидных тел напоминает слоистое расположение клеток в коре млекопитающих. Однако грибовидные тела беспозвоночных не имеют упорядоченных вертикальных связей между нейронами. Тем не менее стратификация нейронов в грибовидных телах предполагает сходство механизмов обработки информации в ассоциативных центрах позвоночных и беспозвоночных животных.

Вероятно, нервная система позвоночных возникла из ганглиев беспозвоночных с нейропилем из переплетённых отростков (см. рис. I-16). Трубчатая нервная система сформировалась в результате выхода отростков нейронов из внутренней полости ганглия. Это событие привело к появлению нейропиля из отростков нервных клеток наружной стороны нервной трубки. Дальнейшее формирование новых нервных центров происходило преимущественно вокруг желудочков, в толще наружного переплетения отростков. В результате возникли центральное серое вещество и окружающие его волокна (белое вещество). Часть клеток выселялась из прижелудочковой зоны и формировала структуры ядерного или стратифицированного типа во внешнем нейропиле (см. рис. I-16). У высших позвоночных центральное серое вещество практически отсутствует, а основные нервные центры мозга представлены сложными ядрами и корковыми структурами различных типов (см. рис. I-15, в). В дальнейшем цефализация позвоночных развивалась по принципу количественного наращивания анатомического представительства анализаторных систем и ассоциативных центров. В отличие от беспозвоночных, нервная система трубчатого типа при замкнутой кровеносной системе может бесконечно увеличиваться в размерах. Это позволило позвоночным достигнуть очень высокого развития умственных способностей.

Подводя итог краткому обзору основных принципов анатомической и гистологической интеграции нервных клеток у беспозвоночных и позвоночных животных, необходимо сделать несколько общих выводов. Во- первых, нейроны в обеих группах животных имеют сходное строение, но различаются по линейным размерам. Во-вторых, интегративные взаимодействия между нейронами осуществляются в сходных гистологических образованиях: ганглиях, ядрах и стратифицированных структурах. Эти образования встречаются как у беспозвоночных, так и у позвоночных животных.

Перейти на страницу:

Похожие книги

Инсектопедия
Инсектопедия

Книга «Инсектопедия» американского антрополога Хью Раффлза (род. 1958) – потрясающее исследование отношений, связывающих человека с прекрасными древними и непостижимо разными окружающими его насекомыми.Период существования человека соотносим с пребыванием насекомых рядом с ним. Крошечные создания окружают нас в повседневной жизни: едят нашу еду, живут в наших домах и спят с нами в постели. И как много мы о них знаем? Практически ничего.Книга о насекомых, составленная из расположенных в алфавитном порядке статей-эссе по типу энциклопедии (отсюда название «Инсектопедия»), предлагает читателю завораживающее исследование истории, науки, антропологии, экономики, философии и популярной культуры. «Инсектопедия» – это книга, показывающая нам, как насекомые инициируют наши желания, возбуждают страсти и обманывают наше воображение, исследование о границах человеческого мира и о взаимодействии культуры и природы.

Хью Раффлз

Зоология / Биология / Образование и наука
Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука