Читаем Происхождение мозга полностью

Надо отметить, что мозг часто оказывает решающее влияние на метаболизм всего животного. Энергопотребление мозга не может быть ниже определённой величины. Обеспечение этого уровня достигается в разных систематических группах изменением скорости кровообращения в сосудах нервной системы. Причиной этих различий являются изменения числа капилляров в 1 ммз ткани мозга. Конечно, в разных отделах мозга протяжённость капилляров может существенно различаться. В зависимости от физиологической нагрузки просвет капилляров также может динамически изменяться. Тем не менее этот весьма усреднённый показатель освещает причины увеличения частоты сердечных сокращений у мелких млекопитающих. Чем меньше капиллярная сеть мозга, тем больше должна быть скорость кровотока, чтобы обеспечить необходимый приток кислорода и питательных веществ. Увеличить обмен можно за счёт частоты сердечных сокращений, дыхания и скорости потребления пищи. Это и происходит у мелких млекопитающих. Сведения о плотности расположения капилляров в головном мозге животных весьма отрывочны. Однако существует общая тенденция, показывающая эволюционное развитие капиллярной сети мозга. У прудовой лягушки длина капилляров в 1 мм3 ткани мозга составляет около 160 мм, у цельноголовой хрящевой рыбы — 500, у акулы — 100, у амбистомы — 90, у черепахи — 350, у гаттерии — 100 мм, у землеройки — 400, у мыши 700, у крысы — 900, у кролика — 600, у кошки — 900, у собаки — 900, а у приматов и человека — 12001400 мм. Надо учесть, что при сокращении длины капилляров площадь их контактной поверхности с нервной тканью уменьшается в геометрической прогрессии. Это свидетельствует о том, что для сохранения минимального уровня снабжения мозга кислородом у землеройки сердце должно сокращаться в несколько раз чаще, чем у приматов и человека. Действительно, для человека эта величина составляет 60–90 в минуту, а для землеройки — 130–450. Масса сердца землеройки должна быть пропорционально больше. Она составляет у человека около 4 %, у капуцина — 8 %, а у землеройки — 14 % массы всего тела. Следовательно, одним из ключевых органов, определяющих метаболизм животных, является мозг.

Попробуем оценить реальную долю энергии, потребляемой организмом животных с различной массой мозга и тела. Большая относительная масса нервной системы мелких млекопитающих предъявляет высокие требования к уровню метаболизма самого мозга. Расходы на его содержание сопоставимы с расходами на содержание мозга человека, которые хорошо исследованы. Базовое потребление мозгом человека питательных веществ и кислорода составляет примерно 8-10 % всего организма. Когда организм неактивен, эта величина более или менее постоянна, хотя может существенно колебаться у крупных и мелких представителей данного вида. Однако даже эта величина непропорционально велика. Мозг человека составляет 1/50 массы тела, а потребляет 1/10 всей энергии — в 5 раз больше, чем любой другой орган. Это несколько заниженные цифры, поскольку только потребление кислорода составляет 18 %. Прибавим и расходы на содержание спинного мозга и периферической системы и получим примерно 1/7. Следовательно, в неактивном состоянии нервная система человека потребляет около 15 % энергии всего организма. Теперь рассмотрим ситуацию с активно работающими мозгом и периферической нервной системой. По самым скромным оценкам, энергетические затраты одного головного мозга возрастают более чем в 2 раза. Учитывая генерализованное повышение активности всей нервной системы, можно уверенно предположить, что около 25–30 % всех расходов организма приходится на её содержание (рис. I-8).

Нервная система млекопитающих оказывается крайне «дорогим» органом, поэтому чем меньше времени мозг работает в интенсивном режиме, тем дешевле обходится его содержание. Проблема решается по-разному. Один из способов связан с минимизацией времени интенсивного режима работы нервной системы. Это достигается большим набором врождённых, инстинктивных программ поведения, которые хранятся в мозге как набор инструкций. Инструкции для различных форм поведения нуждаются только в небольших коррекциях для конкретных условий. Мозг почти не используется для принятия индивидуальных решений, основанных на личном опыте животного. Выживание становится статистическим процессом применения готовых форм поведения к конкретным условиям среды. Энергетические затраты на содержание мозга становятся ограничителем интеллектуальной активности для мелких животных.

Перейти на страницу:

Похожие книги

Инсектопедия
Инсектопедия

Книга «Инсектопедия» американского антрополога Хью Раффлза (род. 1958) – потрясающее исследование отношений, связывающих человека с прекрасными древними и непостижимо разными окружающими его насекомыми.Период существования человека соотносим с пребыванием насекомых рядом с ним. Крошечные создания окружают нас в повседневной жизни: едят нашу еду, живут в наших домах и спят с нами в постели. И как много мы о них знаем? Практически ничего.Книга о насекомых, составленная из расположенных в алфавитном порядке статей-эссе по типу энциклопедии (отсюда название «Инсектопедия»), предлагает читателю завораживающее исследование истории, науки, антропологии, экономики, философии и популярной культуры. «Инсектопедия» – это книга, показывающая нам, как насекомые инициируют наши желания, возбуждают страсти и обманывают наше воображение, исследование о границах человеческого мира и о взаимодействии культуры и природы.

Хью Раффлз

Зоология / Биология / Образование и наука
Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука