Объем памяти, занимаемой массивом, известен уже на этапе компиляции скетча, поэтому компилятор может зарезервировать для массива необходимый объем памяти. Второй пример, приведенный ниже, также создает массив того же размера, но выделяет память для него во время выполнения из пула доступной памяти. Обратите внимание на то, что версии Arduino IDE ниже 1.0.4 не поддерживают malloc.
// sketch_06_03_dynamic
int *array;
void setup()
{
array = (int *)malloc(sizeof(int) * 100);
array[0] = 1;
array[50] = 2;
Serial.begin(9600);
Serial.println(array[50]);
}
void loop()
{
}
В начале скетча определяется переменная int *array. Символ * сообщает, что это указатель на целочисленное значение (или в данном случае массив целых чисел), а не простое значение. Объем памяти, занимаемой массивом, неизвестен, пока не будет выполнена следующая строка в функции setup:
array = (int *)malloc(sizeof(int) * 100);
Команда malloc (
После выделения памяти массивом можно пользоваться точно так же, как если бы память для него была выделена статически. Динамическое распределение памяти позволяет отложить принятие решения о размере массива до фактического запуска скетча, и это единственное преимущество данного подхода.
Однако, используя прием динамического распределения памяти, легко оказаться в ситуации, когда память выделяется, но не освобождается, из-за чего скетч может быстро исчерпать имеющуюся память. Исчерпание памяти может вызвать зависание Arduino. Но если вся память выделяется статически, такого не происходит.
Обратите внимание на то, что даже мне, разработавшему не одну сотню проектов на Arduino, сложно найти вескую причину, оправдывающую прием динамического выделения памяти в Arduino.
Строки
Многие программы для Arduino вообще не нуждаются в текстовом представлении данных или используют его только в командах Serial.println для нужд отладки.
В Arduino поддерживаются два основных метода использования строк: старый метод — массивы элементов типа char и новый метод с применением библиотеки String Object.
Массивы элементов типа char
Когда в скетче определяется строковая константа, такая как
char message[] = "Hello World";
создается статический массив элементов типа char, содержащий 12 символов. Именно 12, а не 11, по числу букв в строке «Hello World», потому что в конец добавляется заключительный нулевой символ (\0), отмечающий конец строки. Такое соглашение для строк символов, принятое в языке C, позволяет использовать массивы символов большего размера, чем предполагалось вначале (рис. 6.4). Каждая буква, цифра или другой символ имеет код, который называют значением ASCII.
Рис. 6.4. Массив элементов типа char в стиле языка C с завершающим нулевым символом
Обратите внимание на то, что часто используется немного иной синтаксис записи строковых констант:
char *message = "Hello World";
Этот синтаксис действует подобным образом, но определяет message как указатель на символ (первый символ в массиве).
Форматированный вывод строк несколькими командами print
Часто строки необходимы, только чтобы вывести сообщение на жидкокристаллический дисплей или в качестве параметра Serial.println. Многие могут подумать, что в основном требуется только возможность объединения строк и преобразования чисел в строки. Например, рассмотрим конкретную проблему — как на жидкокристаллическом дисплее отобразить сообщение «Temp: 32 C». Вы могли бы предположить, что для этого нужно объединить число 32 со строкой "Temp: " и затем добавить в конец строку " C". И действительно, программисты с опытом использования языка Java могли бы попытаться написать на C следующий код:
String text = "Temp: " + tempC + " C";
Увы, в C этот прием не работает. В данном случае сообщение можно вывести несколькими инструкциями print, как показано далее: