Читаем Программирование на языке Пролог полностью

Определим предикат implout так, что implout(X, Y) означает, что формула Y получается из формулы X путем исключения всех импликаций.

implout((P ‹-› Q), (P1 & Q1) # (~Р1 & ~Q1))):- !, implout(P,Pl), implout(Q,Ql).

implout((P -› Q),(~P1 # Q1)):-!, implout(P,P1), implout(Q,Q1).

implout(all(X,P),all(X,P1)):- !.

implout(exists(X,P),exists(X,P1)):-!, implout(P, P1).

implout((P & Q),(P1 & Q1)):- !, implout(P,P1), implout(Q,Q1).

implout((P # Q),(P1 # Q1)):-!, implout(P,P1), implout(Q,Q1).

implout((-P),(~Pl)):-!, implout(P,P1).

implout(P,P).

Этап 2 - перенос отрицания внутрь формулы

Здесь необходимо определить два предиката – negin и neg. Целевое утверждение negin(X, Y) означает, что формула Y получена из X в результате применения к ней преобразования «перенос отрицания». Этот предикат является основным и именно к нему производится обращение из программы. Целевое утверждение neg(X, Y) означает, что формула Y получена из формулы ~X с помощью того же преобразования, что и в negin. В обоих случаях предполагается, что формула прошла обработку на первом этапе и, следовательно, не содержит -› и ‹-›

negin((~P),P1):-!, neg(P,P1).

negin(all(X,P),all(X,P1)):-!, negin(P,P1).

negin(exists(X,P),exists(X,P1)):-!, negin(P,P1).

negin((P & Q),(P1 & Q1)):-!, negin(P,P1), negin(Q,Q1).

negin((P # Q),(P1 # Q1)):-!, negin(P,P1), negin(Q,Q1).

negin(P,P).

neg((~P),P1):-!, negin(P,P1).

neg(all(X,P), exists(X,P1)):-!, neg(P,P1).

neg(exists(X,P),all(X,P1)):-!, neg(P,P1).

neg((P & Q),(P1 # Q1)):-!, neg(P,P1), neg(Q, Q1).

neg((P # Q),(P1 & Q1)):~!, neg(P,P1), neg(Q, Q1).

neg(P,(~P)).

Этап 3 - сколемизация

Предикат skolem имеет три аргумента, соответствующих: исходной формуле, преобразованной формуле и списку переменных, которые на текущий момент были введены посредством кванторов общности.

skolem(all(X,P),all(X,P1),Vars):-!, scolem(P,Pl,[X|Vars]).

skolem(exists(X,P),P2,Vars):-!, gensym(f,F), Sk =..[F|Vars], subst(X,Sk,P,P1), skolem(P1,P2,Vars).

skolem((P # Q),(P1 # Q1),Vars):-!, skolem(P,P1,Vars), skolem(Q,Q1,Vars).

skolem((P & Q),(P1 & Q1), Vars):-!, skoIem(P,P1,Vars), skolem(Q,Q1,Vars).

skolem(P,P,_).

В этом определении используются два новых предиката. Предикат gensym должен быть определен таким образом, что целевое утверждение gensym(X, Y) вызывает конкретизацию переменной Y значением, представляющим новый атом, построенный из атома X и некоторого числа. Он используется для порождения сколемовских констант, не использовавшихся ранее. Предикат gensym определен в разд. 7.8 как генатом. Второй новый предикат, о котором уже упоминалось, это subst. Мы требуем, чтобы subst(Vl,V2,F1,F2) было истинно, если формула F2 получается на F1 в результате замены всех вхождений V1 на V2. Определение этого предиката оставлено в качестве упражнения для читателя. Оно аналогично определениям, приведенным в разд. 7.5 и 6.5.

Этап 4 - вынесение кванторов общности в начало формулы

После выполнения этого этапа, естественно, будет необходимо иметь возможность указывать, какие атомы Пролога представляют переменные формулы исчисления предикатов, а какие атомы представляют константы. Мы больше не сможем воспользоваться удобным правилом, согласно которому переменными являются в точности те символы, которые вводятся с помощью кванторов. Здесь представлена программа, выполняющая операции вынесения и удаления кванторов общности.

univout(all(X,P), P1):- !, univout(P,P1).

univout((P & Q),(P1 & Q1)):-!, univout(P,P1), univout(Q,Q1).

univout((P # Q),(P1 # Q1)):- !, univout(P,P1), univout(Q,Q1).

univout(P,P).

Эти правила определяют предикат univout таким образом, что univout(X, Y) означает, что Y получается из X в результате вынесения и удаления кванторов общности.

Необходимо отметить, что данное определение univout предполагает, что указанные операции будут применяться лишь после того, как полностью будут завершены первые три этапа преобразования. Следовательно, формула не должна содержать импликаций и кванторов существования.

Этап 5 - использование дистрибутивных законов для. & и #

Реальная программа для преобразования формулы в конъюнктивную нормальную форму является значительно более сложной по сравнению с последней программой. При обработке формулы вида (Р # Q), где Р и Q – произвольные формулы, прежде всего, необходимо преобразовать Р и Q в конъюнктивную нормальную

форму, скажем P1 и Q1. И только после этого можно применять одно из преобразований, дающих эквивалентную формулу. Процесс обработки должен происходить именно в таком порядке, так как может оказаться, что ни Р ни Q не содержат& на верхнем уровне, а Р1 и Q1 содержат. Программа имеет вид:

conjn((P # Q),R):-!, conjn(P,P1), conjn(Q,Q1), conjn1((P1 # Q1),R).

conjn((P& Q),(P1& Q1)):-!, conjn(P,P1), conjn(Q,Q1).

conjn(P,P).

conjn1(((P & Q) # R), (P1 & Q1)):- !, conjn((P # Q), P1), conjn((Q # R), Q1).

conjn1((P # (Q & R)),(P1 & Q1)):-!, conjn((P # Q), P1), conjn((P # R), Q1).

conjn1(P,P).

Этап 6 - выделение множества дизъюнктов
Перейти на страницу:

Похожие книги

1С: Бухгалтерия 8 с нуля
1С: Бухгалтерия 8 с нуля

Книга содержит полное описание приемов и методов работы с программой 1С:Бухгалтерия 8. Рассматривается автоматизация всех основных участков бухгалтерии: учет наличных и безналичных денежных средств, основных средств и НМА, прихода и расхода товарно-материальных ценностей, зарплаты, производства. Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, проводить их по учету, формировать разнообразные отчеты, выводить данные на печать, настраивать программу и использовать ее сервисные функции. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов.Для широкого круга пользователей.

Алексей Анатольевич Гладкий

Программирование, программы, базы данных / Программное обеспечение / Бухучет и аудит / Финансы и бизнес / Книги по IT / Словари и Энциклопедии
1С: Управление торговлей 8.2
1С: Управление торговлей 8.2

Современные торговые предприятия предлагают своим клиентам широчайший ассортимент товаров, который исчисляется тысячами и десятками тысяч наименований. Причем многие позиции могут реализовываться на разных условиях: предоплата, отсрочка платежи, скидка, наценка, объем партии, и т.д. Клиенты зачастую делятся на категории – VIP-клиент, обычный клиент, постоянный клиент, мелкооптовый клиент, и т.д. Товарные позиции могут комплектоваться и разукомплектовываться, многие товары подлежат обязательной сертификации и гигиеническим исследованиям, некондиционные позиции необходимо списывать, на складах периодически должна проводиться инвентаризация, каждая компания должна иметь свою маркетинговую политику и т.д., вообщем – современное торговое предприятие представляет живой организм, находящийся в постоянном движении.Очевидно, что вся эта кипучая деятельность требует автоматизации. Для решения этой задачи существуют специальные программные средства, и в этой книге мы познакомим вам с самым популярным продуктом, предназначенным для автоматизации деятельности торгового предприятия – «1С Управление торговлей», которое реализовано на новейшей технологической платформе версии 1С 8.2.

Алексей Анатольевич Гладкий

Финансы / Программирование, программы, базы данных