Последнее из этих правил можно наглядно представить себе, рассмотрев древовидное изображение термов, такое, например, как на рис. 2.7. Процесс сопоставления начинается от корня (главных функторов). Поскольку оба функтора сопоставимы, процесс продолжается и сопоставляет соответствующие пары аргументов. Таким образом, можно представить себе, что весь процесс сопоставления состоит из следующей последовательности (более простых) операций сопоставления:
треугольник = треугольник,
точка( 1, 1) = X,
А = точка( 4, Y),
точка( 2, 3) = точка( 2, Z).
Весь процесс сопоставления успешен, поскольку все сопоставления в этой последовательности успешны. Результирующая конкретизация такова:
X = точка( 1, 1)
A = точка( 4, Y)
Z = 3
В приведенном ниже примере показано, как сопоставление само по себе можно использовать для содержательных вычислений. Давайте вернемся к простым геометрическим объектам с рис. 2.4 и напишем фрагмент программы для распознавания горизонтальных и вертикальных отрезков. "Вертикальность" — это свойство отрезка, поэтому его можно формализовать в Прологе в виде унарного отношения. Рис. 2.8 помогает сформулировать это отношение. Отрезок является вертикальным, если
верт( отр( точка( X, Y), точка( X, Y1) ) ).
гор( отр( точка( X, Y), точка( X1, Y) ) ).
Рис. 2.7. Сопоставление треугольник(( точка( 1, 1), А, точка( 2, 3)) = треугольник( X, точка( 4, Y), точка( 2, Z))
С этой программой возможен такой диалог:
?- верт( отр( точка( 1, 1), точка( 1, 2) ) ).
да
?- верт( отр( точка( 1, 1), точка( 2, Y) ) ).
нет
?- гор( отр( точка( 1, 1), точка( 2, Y) ) ).
Y = 1
На первый вопрос система ответила "да", потому. что цель, поставленная в вопросе, сопоставима с одним из фактов программы. Для второго вопроса сопоставимых фактов не нашлось. Во время ответа на третий вопрос при сопоставлении с фактом о горизонтальных отрезках Y получил значение 1.
Рис. 2.8. Пример вертикальных и горизонтальных отрезков прямых.
Сформулируем более общий вопрос к программе: "Существуют ли какие-либо вертикальные отрезки, начало которых лежит в точке (2,3)?"
?- верт( отр( точка( 2, 3), P) ).
P = точка( 2, Y)
Такой ответ означает: "Да, это любой отрезок, с концом в точке (2,Y), т.е. в произвольной точке вертикальной прямой
P = точка( 2, _136)
Впрочем, разница здесь чисто внешняя. В данном случае _136
— это неинициализированная переменная. Имя _136
— законное имя прологовской переменной, которое система построила сама во время вычислений. Ей приходится генерировать новые имена, для того чтобы переименовывать введенные пользователем переменные в программе. Это необходимо по двум причинам: первая — одинаковые имена обозначают в разных предложениях разные переменные; и вторая — при последовательном применении одного и того же предложения используется каждый раз его "копия" с новым набором переменных.
Другим содержательным вопросом к нашей программe является следующий: "Существует ли отрезок, который одновременно и горизонтален в вертикален?"
?- верт( S), гор( S).
S = отр( точка( X, Y), точка( X, Y) )
Такой ответ пролог-системы следует, понимать так: "да, любой отрезок, выродившийся в точку, обладает как свойством вертикальности, так и свойством горизонтальности одновременно". Этот ответ снова получен лишь из сопоставления. Как и раньше, в ответе вместо X и Y могут появиться некоторые имена, сгенерированные системой.
2.3. Будут ли следующие операции сопоставления успешными или неуспешными? Если они будут успешными, то какова будет результирующая конкретизация переменных?
(а) точка( А, В) = точка( 1, 2)
(b) точка( А, В) = точка( X, Y, Z)
(c) плюс( 2, 2) = 4
(d) +( 2, D)= +( E, 2)
(e) треугольник( точка( -1, 0), Р2, Р3) =
треугольник( P1, точка( 1, 0), точка( 0, Y)
Результирующая конкретизация определяет семейство треугольников. Как бы Вы описали это семейство?