[ assert( дизъюнкт( C1)), аssert( сделано( ~P, С, P))].
% Шаг резолюции, общий случай
[ дизъюнкт( C1), удалить( P, C1, CA),
дизъюнкт( C2), удалить( ~P, C2, CB),
not сделано( C1, C2, P) ] --->
[ assert( дизъюнкт( CA v CB) ),
assert( сделано( C1, C2, P) ) ].
% Последнее правило: тупик
[] ---> [ write( 'Нет противоречия'), стоп ].
% удалить( P, E, E1) означает, получить из выражения E
% выражение E1, удалив из него подвыражение P
удалить( X, X v Y, Y).
удалить( X, Y v X, Y).
удалить( X, Y v Z, Y v Z1) :-
удалить( X, Z, Z1).
удалить( X, Y v Z, Y1 v Z) :-
удалить( X, Y, Y1).
% внутри( P, E) означает P есть дизъюнктивное подвыражение
% выражения E
внутри( X, X).
внутри( X, Y) :-
удалить( X, Y, _ ).
Рис. 16.7. Программа, управляемая образцами, для автоматического доказательства теорем.
Остается еще один вопрос: как преобразовать заданную пропозициональную формулу в конъюнктивную нормальную форму? Это несложное преобразование выполняется с помощью программы, показанной на рис. 16.8. Процедура
транс( Формула)
транслирует заданную формулу в множество дизъюнктов C1, C2 и т.д. и записывает их при помощи assert
в базу данных в виде утверждений
дизъюнкт( C1).
дизъюнкт( C2).
...
Программа, управляемая образцами, для автоматического доказательства теорем запускается при помощи цели пуск
. Таким образом, для того чтобы доказать при помощи этой программы некоторую теорему, мы транслируем ее отрицание в конъюнктивную нормальную форму, а затем запускаем резолюционный процесс. В нашем примере это можно сделать так:
?- транс(~(( а=>b) & ( b=>c) => ( а=>с)) ), пуск.
Ответ программы "Обнаружено противоречие" будет означать, что исходная формула является теоремой.
% Преобразование пропозициональной формулы в множество
% дизъюнктов с записью их в базу данных при помощи assert
:- op( 100, fy, ~). % Отрицание
:- op( 110, xfy, &). % Конъюнкция
:- op( 120, xfy, v). % Дизъюнкция
:- op( 130, xfy, =>). % Импликация
транс( F & G) :- !, % Транслировать конъюнктивную формулу
транс( F),
транс( G).
транс( Формула) :-
тр( Формула, НовФ), !, % Шаг трансформации
транс( НовФ).
транс( Формула) :- % Дальнейшая трансформация невозможна
assert( дизъюнкт( Формула) ).
% Правила трансформаций для пропозициональных формул
тр( ~( ~X), X) :- !. % Двойное отрицание
тр( X => Y, ~X v Y) :- !. % Устранение импликации
тр( ~( X & Y), ~X v ~Y) :- !. % Закон де Моргана
тр( ~( X v Y), ~X & ~Y) :- !. % Закон де Моргана
тр( X & Y v Z, (X v Z) & (Y v Z) ) :- !.
% Распределительный закон
тр( X v Y & Z, (X v Y) & (X v Z) ) :- !.
% Распределительный закон
тр( X v Y, X1 v Y) :- % Трансформация подвыражения
тр( X, X1), !.
тр( X v Y, X v Y1) :- % Трансформация подвыражения
тр( Y, Y1), !.
тр( ~X, ~Х1) :- % Трансформация подвыражения
тр( X, X1).
Рис. 16.8. Преобразование пропозициональных формул в множество дизъюнктов с записью их в базу данных при помощи assert
.
16.4. Заключительные замечания