Наша оболочка экспертной системы, описанная в предыдущем разделе, может работать только с такими вопросами (утверждениями), которые либо истинны, либо ложны. Предметные области, в которых на любой вопрос можно ответить "правда" или "ложь", называются
• Экспертам, по-видимому, неудобно мыслить в терминах вероятностей. Их оценки правдоподобия не вполне соответствуют математическому определению вероятностей.
• Работа с вероятностями, корректная с точки зрения математики, потребовала бы или какой-нибудь недоступной информации, или каких-либо упрощающих допущений, не вполне оправданных с точки зрения практического приложения.
Поэтому, даже если выбранная мера правдоподобия лежит в интервале 0 и 1, более правильным будет называть ее из осторожности "субъективной уверенностью", подчеркивая этим, что имеется в виду оценка, данная экспертом. Оценки эксперта не удовлетворяют всем требованиям теории вероятностей. Кроме того, вычисления над такими оценками могут отличаться от исчисления вероятностей. Но, несмотря на это, они могут служить вполне адекватной моделью того, как человек оценивает достоверность своих выводов.
Для работы в условиях неопределенности было придумано множество различных механизмов. Мы будем рассматривать здесь механизм, используемый в системах Prospector и AL/X для минералогической разведки и локализации неисправностей соответственно. Следует заметить, что модель, применяемая в системе Prospector, несовершенна как с теоретической, так и с практической точек зрения. Однако она использовалась на практике, она проста и может служить хорошей иллюстрацией при изложении основных принципов, а потому вполне подойдет нам, по крайней мере для первого знакомства с этой областью. С другой стороны, известно, что даже в значительно более сложных моделях не обходится без трудностей.
14.6.2. Модель Prospector'а
Достоверность событий моделируется с помощью действительных чисел, заключенных в интервале между 0 и 1. Для простоты изложения мы будем называть их "вероятностями", хотя более точный термин "субъективная уверенность". Отношения между событиями можно представить графически в форме "сети вывода". На рис. 14.14 показан пример сети вывода. События изображаются прямоугольниками, а отношения между ними — стрелками. Овалами изображены комбинации событий (И, ИЛИ, НЕ).
Мы будем считать, что отношения между событиями (стрелки) являются своего рода "мягкими импликациями". Пусть имеются два события
если
В случае же "мягкой импликации" это отношение может быть менее определенным, так что ему можно приписать некоторую "силу", с которой оно действует:
если
Та сила, с которой достоверность
Рис. 14.14. Сеть вывода системы AL/X (заимствовано из Reiter (1980)). Числа, приписанные прямоугольникам, — априорные вероятности событий; числами на стрелках задается "сила" отношений между событиями.
В сети вывода это изображается так: