Читаем Программирование игр и головоломок полностью

Нужно работать по модулю n. Удобнее всего пронумеровать элементы вектора от 0 до n − 1. Все элементы спускаются вниз на m по модулю n. Элемент, который переходит в 0, имеет номер m; элемент, который переходит в m, имеет номер 2m по модулю n; элемент, который переходит в 2m, имеет номер 3m по модулю n… Таким образом, мы получаем цепочку чисел, кратных m по модулю n. Весь вопрос в том, чтобы узнать, порождает ли последовательность чисел, кратных m по модулю n, последовательность всех целых от 0 до n − 1.

Это так, если m и n взаимно просты. В противном случае пусть с наибольший общий делитель m и n:

m = m'с, n = n'c,

n' * m = n' * m' * с = m' * n = 0 по модулю n.

Эта цепочка возвращается в 0 за n' = n/с операций. При этом пробегается не весь вектор, а только его элементы, сравнимые с 0 по модулю с.

Беря в качестве исходных элементов различных циклов последовательно целые числа от 0 до c − 1, вы разместите все элементы вектора, причем каждый из них будет перемещаться в точности один раз…

Головоломка 34.

Рассмотрите более общую задачу, что заставит вас открыть одно из этих знаменитых «преобразований программы», столь полезных, когда желательно улучшить уже существующие программы. Обозначим через t и u два условия, а через a и b — две последовательности инструкций. Вот простой цикл:

ПОКА t ВЫПОЛНЯТЬ

  ЕСЛИ u ТО a ИНАЧЕ b

КОНЕЦ_ЕСЛИ

ВЕРНУТЬСЯ

Последовательность операций следующая:

— проверяется условие t,

— если оно истинно, то проверяется u,

— если u истинно, то выполняется a, и все возобновляется.

Допустим, что условия t и u таковы, что я имею возможность проверить u, даже если проверка условия t дает значение ЛОЖЬ[29]. Тогда, пока условия t и u истинны, в цикле выполняется а.

Вот другая последовательность, которая может встретиться:

— проверяется условие t,

— если оно истинно, то проверяется u,

— если u ложно, то выполняется b, и все возобновляется.

Таким образом, мы приходим к форме, для которой можно доказать, что она всегда эквивалентна исходной (с точностью до ограничения, что должна существовать возможность вычисления и даже в случае, когда t ложно).

ПОКА t ВЫПОЛНЯТЬ

  ПОКА t И u ВЫПОЛНЯТЬ а ВЕРНУТЬСЯ

  ПОКА t И НЕ u ВЫПОЛНЯТЬ b ВЕРНУТЬСЯ

ВЕРНУТЬСЯ

Мы перепишем программу для определения равнин, чтобы придать ей форму ПОКА, заключенного в скобки ЕСЛИ:

i := 1; р : = 0;

ПОКА in ВЫПОЛНЯТЬ

  ЕСЛИ a[i] = a[iр]

    ТО x := a[i]; р := р + 1; i := i + 1

    ИНАЧЕ i := i + 1

  КОНЕЦ_ЕСЛИ

ВЕРНУТЬСЯ

Мы обнаруживаем, что в нашем случае мы не можем объединить два условия с помощью операции И: если i не удовлетворяет условию, что i не больше n, то нельзя поставить вопрос относительно a[i]. Обрисуем трудность подходящим образом:

— нужно либо добавить в таблицу а поле, которое содержит какую-нибудь несущественную для нас величину (мы к этой величине не обращаемся);

— либо нужно допустить, что операция И не коммутативна. Для вычисления t и u мы вычисляем t, и если результат есть ЛОЖЬ, то все кончено и притом с результатом ЛОЖЬ. В противном случае результат есть значение условия u.

Тогда можно использовать наше преобразование:

i := 1; р := 0;

ПОКА in ВЫПОЛНЯТЬ

  ПОКА in И а[i] = a[iр] ВЫПОЛНЯТЬ

    x := а[i]; р := р + 1; i := i + 1

  ВЕРНУТЬСЯ

  ПОКА in И а[i] ≠ a[iр] ВЫПОЛНЯТЬ

    i : = i + 1

  ВЕРНУТЬСЯ

ВЕРНУТЬСЯ

Первый цикл движется по таблице а, пока обнаруживается, что элементы равны между собой. Более точно, р и i изменяются одинаково, так что разность iр остается постоянной. Все элементы a[i] сравниваются с одним и тем же элементом, и величина x остается постоянной, равной этому элементу, на протяжении всего цикла.

Второй цикл изменяет i до тех пор, пока не обнаружится пара элементов, отстоящих на р + 1.

Уточним ситуацию выхода из первого внутреннего цикла. Мы собираемся найти конец равнины, которая лучше всех предыдущих, мы фиксируем ее длину р и ее значение х, a i обозначает первый элемент после этой равнины. Мы можем надеяться найти пару j, jр с

a[j] = a[jр]

только пока jр остается на равнине, которую мы собираемся пройти. Наименьшее соответствующее i значение j удовлетворяет условию jр = i, или j = i + р.

Следовательно, можно увеличивать i от р в обоих циклах, не меняя действия программы, что ускоряет ее работу.

Чтобы ускорить и первый внутренний цикл, мы присвоим переменной x ее значение перед циклом и сохраним ее начальное значение в j. Так как iр остается постоянным, то можно вычислить значение р также и после выхода из цикла. Начальные значения суть i = j и р = р0, а конечные значения i и р удовлетворяют соотношениям iр = jр0, откуда р = i + р0j:

i := 1; р := 0

ПОКА in ВЫПОЛНЯТЬ

x := а[i]; j := i

  ПОКА in И а[i] = x ВЫПОЛНЯТЬ

    i := i + 1

  ВЕРНУТЬСЯ

  р := i + рj; i := i + p

  ПОКА in И а[i] ≠ a[iр] ВЫПОЛНЯТЬ

    i := i + 1

Перейти на страницу:

Похожие книги

1С: Бухгалтерия 8 с нуля
1С: Бухгалтерия 8 с нуля

Книга содержит полное описание приемов и методов работы с программой 1С:Бухгалтерия 8. Рассматривается автоматизация всех основных участков бухгалтерии: учет наличных и безналичных денежных средств, основных средств и НМА, прихода и расхода товарно-материальных ценностей, зарплаты, производства. Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, проводить их по учету, формировать разнообразные отчеты, выводить данные на печать, настраивать программу и использовать ее сервисные функции. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов.Для широкого круга пользователей.

Алексей Анатольевич Гладкий

Программирование, программы, базы данных / Программное обеспечение / Бухучет и аудит / Финансы и бизнес / Книги по IT / Словари и Энциклопедии
1С: Управление торговлей 8.2
1С: Управление торговлей 8.2

Современные торговые предприятия предлагают своим клиентам широчайший ассортимент товаров, который исчисляется тысячами и десятками тысяч наименований. Причем многие позиции могут реализовываться на разных условиях: предоплата, отсрочка платежи, скидка, наценка, объем партии, и т.д. Клиенты зачастую делятся на категории – VIP-клиент, обычный клиент, постоянный клиент, мелкооптовый клиент, и т.д. Товарные позиции могут комплектоваться и разукомплектовываться, многие товары подлежат обязательной сертификации и гигиеническим исследованиям, некондиционные позиции необходимо списывать, на складах периодически должна проводиться инвентаризация, каждая компания должна иметь свою маркетинговую политику и т.д., вообщем – современное торговое предприятие представляет живой организм, находящийся в постоянном движении.Очевидно, что вся эта кипучая деятельность требует автоматизации. Для решения этой задачи существуют специальные программные средства, и в этой книге мы познакомим вам с самым популярным продуктом, предназначенным для автоматизации деятельности торгового предприятия – «1С Управление торговлей», которое реализовано на новейшей технологической платформе версии 1С 8.2.

Алексей Анатольевич Гладкий

Финансы / Программирование, программы, базы данных