Вы можете также действовать слева направо:
5
Деля левую цифру на 5, вы получаете
Остальное оставляю исследовать вам.
Головоломка 4.
Обычно я бываю глубоко разочарован тем, что нахожу в книгах по информатике или по математике касательно квадратных корней. Чаще всего вам предлагают метод Ньютона: пусть вам нужно извлечь квадратный корень из числа
Вне всякого сомнения, вы можете взять
чтобы иметь дело только с целыми числами, то в качестве последовательных значений и вы получите
Чтобы использовать здесь этот алгоритм, вы должны написать программу целочисленного деления двух целых чисел большой длины.
Другой способ действия основан на том факте, что разность двух последовательных квадратов есть нечетное число:
(
так что последовательные разности являются последовательными нечетными числами. Поэтому можно видеть, что сумма нечетных чисел от 1 до 2
50 − 1 = 49,
49 − 3 = 46,
46 − 5 = 41,
41 − 7 = 34,
34 − 9 = 25,
25 − 11 = 14,
14 − 13 = 1.
Нельзя продолжать, не получая отрицательной разности. Последнее нечетное вычитаемое равно 13, поэтому корень есть (13 + 1)/2 = 7 (и остаток 1). Этот способ гораздо лучше подходит для распространения на случай очень больших чисел, потому что вам требуется реализовать только две операции:
— прибавить 2 к большому числу;
— вычесть одно большое число из другого.
Но число шагов цикла равно искомому квадратному корню, а он может оказаться весьма большим.
Можно обобщить предыдущий алгоритм, используя свойства десятичной записи чисел. Данное число разделяется на куски по две цифры, начиная справа; затем мы начинаем вычитать последовательные нечетные числа из крайнего слева куска:
Если это нельзя продолжать дальше, то последнее вычитаемое число увеличивается на единицу, сдвигается на один шаг вправо, и следом за ней приписывается единица. Это — первое нечетное число, которое следует вычитать из предыдущего остатка.
В приведенном выше примере 7 + 1 = 8; приписывая 4, получаем 81 и продолжаем:
Поскольку продолжать дальше нельзя (последнее возможное вычитание из остатка — это крайнее справа), то последнее из вычитаемых чисел нужно увеличить на 1, а затем разделить на 2, чтобы получить корень. Последний остаток и есть остаток квадратного корня:
85 + 1 = 86, 86/2 = 43,
1909 = (43)2 + 60.
Этот алгоритм достаточно прост для программирования при длинных числах, и он дает вполне разумное время вычисления.
У вас много возможностей представлять свои данные. Так как мы оперируем с кусками из двух цифр, то вы можете задавать свои данные таблицами целых чисел в интервале от 0 до 99.
Вы можете представлять свои целые числа как цепочки символов, где используются только числовые символы (цифры) от 0 до 9. Выбор способа зависит от ваших предпочтений и от возможностей вашей машины оперировать с таблицами и цепочками. Тщательно рассмотрите, какие операции нужно сделать. Вы ничем не ограничены: почему бы не запрограммировать и сравнить два разных решения?
Я предложил вам алгоритм без доказательства. Поэтому попытайтесь его проверить…
Я предложил вам алгоритм для десятичной системы счисления. Можно предложить похожий алгоритм для двоичной системы. Тогда не возникнет цикл вычитаний последовательных нечетных чисел из каждого куска, поскольку в куске есть только одно нечетное число: 1. Алгоритм упрощается: если можно вычесть нечетное число — мы его вычитаем, в противном случае мы не делаем ничего. Затем сдвигаем, добавляем 1 и приписываем 1 в конце… Этот алгоритм намного легче реализовать. Но тогда нужно сначала перейти к основанию 2, а затем преобразовать двоичный результат в десятичный. Вам следует посмотреть, что более эффективно…
Головоломка 5.
Аккуратно поставим задачу. То, что от вас требуется, — это не взятая глобально последовательность, а вот что: если начало последовательности выписано, то нужно найти следующее число. Возьмем пример, данный в головоломке 5: какое число следует за 50?
Есть ровно три возможности.