throw ThreadExitException(/* поток возвращает */NULL);
}
}
void* thread_function(void*) {
try {
do_some_work();
} catch (ThreadExitException ex) {
/* Возникла необходимость завершить поток. */
ex.DoThreadExit();
}
return NULL;
}
4.4. Синхронизация потоков и критические секции
Программирование потоков — нетривиальная задача, ведь большинство потоков выполняется одновременно. К примеру, невозможно определить, когда система предоставит доступ к процессору одному потоку, а когда — другому. Длительность этого доступа может быть как достаточно большой, так и очень короткой, в зависимости от того, как часто система переключает задания. Если в системе есть несколько процессоров, потоки могут выполняться одновременно в буквальном смысле.
Отладка потоковой программы также затруднена, ведь не всегда можно воссоздать ситуацию, приведшую к проблеме. В одном случае программа работает абсолютно правильно, а в другом — вызывает системный сбой. Нельзя заставить систему распланировать выполнение потоков так, как она сделала при предыдущем запуске программы.
Большинство ошибок, возникающих при работе с потоками, связано с тем, что потоки обращаются к одним и тем же данным. Как уже говорилось, это одно из главных достоинств потоков, оно же является их бедствием. Если один поток заполняет структуру данными в то время, когда второй поток обращается к этой же структуре, возникает хаос. Очень часто неправильно написанные потоковые программы корректно работают только в том случае, когда один поток планируется системой с более высоким приоритетом, т.е. чаще или быстрее обращается к процессору, чем другой поток. Подобного рода ошибки называются
4.4.1. Состояние гонки
Предположим, что в программу поступает группа запросов, которые обрабатываются несколькими одновременными потоками. Очередь запросов представлена связанным списком объектов типа struct job
.
Когда каждый поток завершает свою операцию, он обращается к очереди и проверяет, есть ли в ней еще необработанные запросы. Если указатель job_queue
не равен NULL
, поток удаляет из списка самый верхний элемент и перемещает указатель на следующий элемент. Потоковая функции, работающая с очередью заданий, представлена в листинге 4.10.
#include
struct job {
/* Ссылка на следующий элемент связанного списка. */
struct job* next;
/* Другие поля, описывающие требуемую операцию... */
};
/* Список отложенных заданий. */
struct job* job_queue;
/* Обработка заданий до тех пор, пока очередь не опустеет. */
void* thread_function(void* arg) {
while (job_queue != NULL) {
/* Запрашиваем следующее задание. */
struct job* next_job = job_queue;
/* Удаляем задание из списка. */
job_queue = job_queue->next;
/* выполняем задание. */
process_job(next_job);
/* Очистка. */
free(next_job);
}
return NULL;
}
Теперь предположим, что два потока завершают свои операции примерно в одно и то же время, а в очереди остается только одно задание. Первый поток проверяет, равен ли указатель job_queue
значению NULL
, и, обнаружив, что очередь не пуста, входит в цикл, где сохраняет указатель на объект задания в переменной next_job
. В этот момент Linux прерывает первый поток и активизирует второй. Он тоже проверяет указатель job_queue
, устанавливает, что он не равен NULL
, и записывает тот же самый указатель в свою переменную next_job
. Увы, теперь мы имеем два потока, выполняющих одно и то же задание.
Далее ситуация только ухудшается. Первый поток удаляет последнее задание из очереди. делая переменную job_queue
равной NULL
. Когда второй поток попытается выполнить операцию job_queue->next
, возникнет фатальная ошибка сегментации.
Это наглядный пример гонки за ресурсами. Если программе "повезет", система не распланирует потоки именно таким образом и ошибка не проявится. Возможно, только в сильно загруженной системе (или в новой многопроцессорной системе важного клиента!) произойдет "необъяснимый" сбой.