Этот, казалось бы, понятный и элементарный процесс возникновения родового понятия никаких возражений не встречает, как раз и являясь тем продуктом научной абстракции, которым оперирует наука. Так рассуждал Аристотель, но уже и Аристотелю процесс получения родового понятия кое-где казался если не ложным, то во всяком случае неполным. Ему приходилось гипостазировать эти общие понятия и понимать их в виде таких форм, которые существуют хотя и в вещах, но существуют самостоятельно, субстанционально, откуда и все антично-средневековое учение о субстанциональных формах, которое в нетронутом виде продолжает функционировать еще у Фр. Бэкона, несмотря на эмпиризм, сенсуализм и индуктивизм этого мыслителя.
На самом деле, что мы получаем, отвлекая то или другое свойство вещи от самой вещи, и как мы это производим? Можно ли сказать, что родовое понятие синевы получается у нас только после рассмотрения известного множества синих предметов? Этого никак нельзя сказать, потому что если и в первом, и во втором, и в третьем из наблюдаемых нами предметов содержится для нашего восприятия всего только нуль синевы, то, сколько бы мы синих предметов ни наблюдали, из суммы этих нулей синевы никогда не может получиться какая-нибудь единица синевы, то есть синева как таковая. Наблюдая уже первый синий предмет, мы необходимым образом видим его именно как синий, то есть эту синеву как родовое понятие мы наблюдаем уже в первом из воспринимаемых нами синих предметов. Синева получается вовсе не из сложения признаков синевы того или иного множества предметов; и если мы хотим обратить внимание именно на признак синевы, то он виден нам уже на первом синем предмете, без всякого перехода в какое-нибудь огромное количество синих предметов. И если мы хотим действительно извлечь синеву из синих предметов и на ней сосредоточить наше внимание, то это значит, что мы отбросили все прочие признаки предметов, кроме их синевы, и забыли, чем, собственно говоря, являются наблюдаемые нами синие предметы в их конкретности. Синеву как родовое понятие мы при этом действительно получим. Но такое родовое понятие будет настолько бедным, пустым и бесплодным, что из него мы ровно ничего вывести не сможем.
Школьная логика учит при этом, что одновременно с убылью содержания наблюдаемых предметов растет объем классов всех подобного рода предметов. Можно от француза перейти к человеку, от человека к живому существу, от живого существа к его бытию, потом к бытию вообще и закончить понятием «нечто», объем которого действительно будет очень широк, так как он будет относиться ко множеству классов всяких предметов, но содержание которого будет настолько ничтожным, что его можно будет приравнять нулю. Это высшее родовое понятие максимально бессодержательно, максимально пусто и максимально бесплодно. Можно ли считать, что мы стояли на правильном пути, когда получали высшее родовое понятие путем отвлечения однородных признаков от отдельных предметов и отбрасывания данных предметов как цельных и живых вещей?
Математика учит нас совсем другому образованию общих понятий, а математика именно и есть самая точная наука. Можно ли сказать, что какое-нибудь уравнение есть результат отвлечения тех или иных признаков от эмпирически наблюдаемых предметов? Наоборот, математика решает свои уравнения без всякой оглядки на эмпирические предметы, соблюдая только строгую последовательность своего рассуждения. Но интереснее всего то, что теоретически решенное математиком уравнение не только соответствует действительности, но как раз учитывает все мельчайшие подробности предметов, от которых отвлекалась школьная логика, создавая свои родовые понятия. Математическое уравнение действительно есть нечто общее и устойчивое в связи с единично-текущей действительностью. Однако это такое общее, которое не отбросило предметы в их цельной данности, но вместило их в себе, однако не в их грубой раздельности, но в виде закона протекания этой действительности. Родовые понятия школьной логики чем больше по своему объему, тем беднее по своему содержанию; математические же родовые понятия чем больше по своему объему, тем большее количество единичных фактов в себе содержат, то есть в них чем больше объем понятия, тем больше и его содержание.
Возьмите простое квадратное уравнение в алгебре. Под «