В качестве критерия системной определённости объектов нередко используется различие между системообразующими и несистемообразующими связями. Некоторые исследователи указывают, например, на интегративные связи как базовые для исследования системных объектов. В других случаях к системообразующим относят связи органического типа в отличие от механических связей. Системные связи отождествляются также с локализующими связями. В этом случае подчёркивается целокупный характер системных объектов, их отграниченность от других систем и от среды вообще /2/. Система рассматривается и как объект, имеющий интенсивные внутренние связи и относительно слабые внешние взаимодействия /3/. Уместно подчеркнуть, что выявление главного условия системности является трудной проблемой. Очевидно, однако, что уточнение базового признака системности следует искать на путях последовательной конкретизации представления о связанности вещей. Из этого проистекают и особенности системного моделирования реальных объектов, а также моделирования деятельности по созданию искусственных систем. Необходимо учитывать, например, что хотя системность предполагает взаимодействие объектов, но лишь такое, которое строится на основе избирательного сродства и осуществляется по законам подобного сродства. В системах доминирует особый тип обусловленности объектов, в рамках которой последние превращаются в носителей совместных функций, поддерживающих существование целого. Так, в товарном обществе независимые друг от друга производители товаров, налаживая обмен, вступают в необходимые отношения, при которых отдельные частные работы реализуются как звенья совокупного общественного труда. Аналогично дело обстоит в живом организме, где функционирование отдельных органов образует связанную цепь в жизнеобеспечении всего организма.
Итак, в процессе системного моделирования мы обязаны учитывать, что каждая система дифференцируется на компоненты и элементы, однако в системе элементы подчинены определённому функциональному единству, функциональной целостности. Причём целостный уровень играет специфическую детерминирующую роль в отношении своих элементов. Именно на уровне целого распределяются функции между составляющими системы, а наличные структуры приспосабливаются к характеру функционирования целого.
Сказанное позволяет определить системность как целостность, характеристической чертой которой является функциональная природа согласованного, скоррелированного действия элементов. О функциональности правомерно говорить, когда объекты включены не только в физико-химические изменения, но также в процессы регуляции, которые играют весьма важную роль в обеспечении самосохранения системы при разнообразных внешних воздействиях на неё. Поэтому специфику моделирования системного бытия нельзя сводить к отражению определённой структуры, упорядоченных, закономерных отношений между множеством компонентов, равно как и к описанию связей между элементами различной природы. Указание на эту характеристику системности фиксирует лишь её предпосылку и абстрактное условие. Реально же система существует тогда, когда складывается внутренняя полнота отношений между элементами, проявляющаяся в том, что каждый элемент становится необходимым для устойчивого существования соответствующей целостности.
Некоторые исследователи подчёркивают различие, и даже противоположность между понятиями "целое" и "система". Так, В.Н. Южаков полагает, что целое охватывает весь объект, тогда как система - это лишь некоторый "срез" объекта, в рамках которого объединяется всё необходимое и достаточное для обеспечения целостных функций /4/. В этом утверждении справедливо отмечается нетождественность понятий "объект" и "система". Однако главный смысл понятия "система" состоит не в аспектном отражении объекта, не в выявлении "среза" объекта. Его методологическое и моделирующее назначение заключается в характеристике особого динамического качества объектов, в фиксации совокупности изменений, специфика которых выражается представлением об их функциональной согласованности и целостности.