Читаем Приложения к трактату «Основы физики духа» полностью

«Даже дробная размерность (ну кому может присниться число измерений пространства, равное не целому числу! А математики «загодя» и такое ввели) по Хаусдорфу и Безиковичу - и та эмпирически сгодилась для измерения столь важного земного объекта, как длина береговой линии побережья, изрезанного бухточками и подверженного приливам и отливам. Вопреки интуитивному убеждению, будто кривая линия всегда имеет размерность единица, линия британского побережья точнее вычисляется, если приписать ей размерность полтора. Нигде не дифференцируемая кривая Вейерштрасса пригодилась для описания броунова движения и качки корабля, т.е. его остойчивости. И, наконец триумфально вошли и научный оборот так называемые «странные аттракторы». Этот термин относится к полуэмпирически составленным метеорологическим уравнениям для течения неоднородно нагретого неоднородного газа, которые при их численном решении на компьютерах вдруг стали выдавать такие рисунки для распределения как бы притягивающихся один к другому слоев («аттракторы»), которые выглядели в точности как построение канторова дисконтинуума - заумнейшей модели, которая одно время и математикам-то казалась ненужной» (там же).

Заметим, что в действительности это - уже второе «возвращение» математики к реальности. Первое произошло тогда, когда казавшаяся полной абстракцией геометрия Римана и Лобачевского нашла свое применение в теории Эйнштейна… Оба эти «возвращения» объединяет тот примечательный факт, что ранее абстрактные объекты, плоды человеческого сознания и математических закономерностей, стали обнаруживаться как присутствующие в природе и перестали нести функцию чисто умозрительных конструкций.

Уже сам данный факт, пусть и косвенно, свидетельствует о глубинной взаимосвязи даже столь специфических объектов духовно-нематериального мира с миром материальным!.. Но еще более любопытны некоторые детали «возвращения»…

Рассмотрим, например, фрактали, т.е. дробные размерности… В случае с береговой линией мы имеем дело с пересечением двух двумерных поверхностей сложной формы: поверхности воды и земной поверхности. Казалось бы, результатом их «взаимодействия» должна быть одномерная линия, но, как указывалось выше, гораздо лучший результат дает размерность полтора. Здесь мы опять сталкиваемся с фактом того, что важно не ЧТО взаимодействует, а КАК (см. тенденции физики)!..

Но есть еще более «экзотичные штучки»…

«Кантором построена функция (которая называется то «чертовой лестницей», то «канторовой лестницей»…) с такими странными свойствами: она непрерывна на интервале, она почти везде на интервале имеет производную, всюду в точках существования производной производная равна нулю, но функция эта не постоянная, а монотонно возрастает на данном интервале, так что на концах любого интервала ее значения различны. Итак, из df = 0 не следует f = const. Значит, материальная точка в ньютоновой механике могла бы двигаться по такому закону: всюду, где она имеет мгновенную скорость, эта скорость равна нулю. Частица эта обладает мгновенной скоростью почти везде; это означает, что вероятность того, что в данный момент времени она имеет мгновенную скорость, - всегда равна единице. И тем не менее частица не покоится на месте, но перемещается. Неуклонно в одном и том же направлении, поступательно, по прямой. Разумеется, это возможно исключительно за счет недифференцируемости траектории, хотя бы и на множестве меры нуль. Отметим еще, что и структура пространства-времени весьма существенна: такое возможно лишь при существовании сколь угодно быстрого перемещения (впрочем, не бесконечно быстрого); в условиях же ограниченности скоростей скоростью света изложенный парадокс невозможен. Но вот другое применение той же чертовой лестницы допустимо и к ньютоновой и к релятивистской механике. Возможно, что у материальной точки всегда d2x/dt2 = 0 там, где d2x/dt2 = 0 существует, а d2x/dt2 = 0 существует почти везде (т.е. существует с вероятностью единица). При этом dx(0)/dt = 0, x(0) = 0, но движение этой точечной массы происходит не по известным инерциальным законам x(t) = 0, но с переменной скоростью, с переменными импульсами. А ведь уравнение d2x/dt2 = 0 вроде бы «ручается» за отсутствие внешних сил!» (там же).

Итак, физика только-только подбирается к существованию взаимодействий со скоростями, превышающими скорость света, а в математике уже готов соответствующий этому явлению объект!!!

Но и этим дело не ограничивается!.. Как упоминалось ранее, вопрос о наличии взаимодействия со скоростью, превышающей скорость света, в физических теориях связан с положением о непрерывном взаимодействии всех частиц во Вселенной. Сравните это со следующей цитатой:

Перейти на страницу:

Похожие книги

Эра Меркурия
Эра Меркурия

«Современная эра - еврейская эра, а двадцатый век - еврейский век», утверждает автор. Книга известного историка, профессора Калифорнийского университета в Беркли Юрия Слёзкина объясняет причины поразительного успеха и уникальной уязвимости евреев в современном мире; рассматривает марксизм и фрейдизм как попытки решения еврейского вопроса; анализирует превращение геноцида евреев во всемирный символ абсолютного зла; прослеживает историю еврейской революции в недрах революции русской и описывает три паломничества, последовавших за распадом российской черты оседлости и олицетворяющих три пути развития современного общества: в Соединенные Штаты, оплот бескомпромиссного либерализма; в Палестину, Землю Обетованную радикального национализма; в города СССР, свободные и от либерализма, и от племенной исключительности. Значительная часть книги посвящена советскому выбору - выбору, который начался с наибольшего успеха и обернулся наибольшим разочарованием.Эксцентричная книга, которая приводит в восхищение и порой в сладостную ярость... Почти на каждой странице — поразительные факты и интерпретации... Книга Слёзкина — одна из самых оригинальных и интеллектуально провоцирующих книг о еврейской культуре за многие годы.Publishers WeeklyНайти бесстрашную, оригинальную, крупномасштабную историческую работу в наш век узкой специализации - не просто замечательное событие. Это почти сенсация. Именно такова книга профессора Калифорнийского университета в Беркли Юрия Слёзкина...Los Angeles TimesВажная, провоцирующая и блестящая книга... Она поражает невероятной эрудицией, литературным изяществом и, самое главное, большими идеями.The Jewish Journal (Los Angeles)

Юрий Львович Слёзкин

Культурология