Читаем Прикладные аспекты аварийных выбросов в атмосферу полностью

Если источник поступления тяжелых газов расположен на поверхности земли, то они стелются и растекаются вдоль подстилающей поверхности в низкие места, следуя рельефу местности. При высотном источнике газы опускаются к земле и их распространение происходит под действием диффузии и ветра в сравнительно тонком приземном слое. Поведение струи тяжелого газа из приподнятого источника иллюстрируется Рис. 3.9. Другой особенностью атмосферного движения выбросов является их поведение в изменяющемся с высотой ветровом потоке.

Известно, что изменение ветра с высотой может оказать существенное влияние на характеристики полей загрязнений от объемного высотного источника, возникшего при взрыве или пожаре и последующем подъеме пылегазовой смеси. Не учет ветрового разворота завышает концентрации токсикантов в воздухе и на поверхности земли и приводит к более жесткому прогнозу последствий аварий, что может оказать влияние не только на тактические, но и на стратегические решения по ликвидации инцидента, которые не будут адекватны действительности.

Рассмотрим механизм изменения ветра с высотой и интерполяционные формулы, позволяющие учесть данный эффект. Под влиянием трения, возникающего между движущимся воздухом и подстилающей поверхностью (сушей или водой) упорядоченное движение потока у поверхности должно прекращаться, то есть скорость на поверхности обращается в нуль. В соответствии с этим с увеличением высоты скорость ветра должна возрастать. Изменяется при этом также и направление ветра, однако не так упорядоченно и не всегда столь равномерно, как скорость и интенсивность турбулентного перемешивания. Эти изменения с высотой всех характеристик ветра, а особенно его скорости и интенсивности турбулентного перемешивания, часто имеют важное значение при рассмотрении технических вопросов и составлении прогнозов развития физической картины продуктов аварии в атмосфере.

Рис. 3.9. Схема движений струйного выброса для легкого (а) и тяжелого (б) газов в случае устойчивой стратификации атмосферы: 1 — устройство поступления загрязнений в атмосеру; 2 — струйный поток; 3 — рассеиваемая примесь; 4а и 46 — приращения динамических высот подъема; 5а и 56 — высоты выбросов на завершающих участках траекторий; 6а и 66 — мнимые источники; 7 — ветер.

Изменения ветра с высотой, как и вертикальные изменения всех других метеорологических параметров, подвержены временным колебаниям из-за погодных условий. Кроме того, они различны в разных географических пунктах из-за различий характера земной поверхности. Направление ветра в пограничном слое атмосферы, примыкающем к поверхности земли, из-за действия силы Кориолиса в среднем постепенно поворачивает вправо. Эффект, обусловленный этой силой, состоит в том, что во вращающейся системе координат, которую представляет Земля, материальная точка или некоторый элементарный объем, состоящий из материальных точек, движущихся не параллельно оси этого вращения, отклоняются в направлении, перпендикулярному их относительной скорости, или оказывают давление на тело, препятствующее такому отклонению.

Средняя скорость ветра плавно изменяется с высотой и может быть описана степенной зависимостью вида [138]:

Vz = V0(z / z0) р,

где

V z — скорость ветра на высоте z;

V 0 — скорость ветра на высоте z0

причем z < z0; р — параметр турбулентности, причем 0 ≤ р ≤ 1.

Параметр турбулентности р в этой формуле учитывает пульсационное состояние атмосферы во времени и пространстве при выборе его значений в соответствии с характеристиками подстилающей поверхности. Значение р = 0 соответствует максимально развитому турбулентному перемешиванию, когда весь поток однороден и не зависит от пространственной координаты, а р = 1 соответствует ламинарному течению, линейно ускоряющемуся с ростом z.

Для условий Центральной Европы можно использовать закон изменения ветра с высотой, предложенный Гельманом [138]

V z = V 0 (z / z0) 1/4, при z ≤15 м;

V z = V 0 (z / z0) 1/5, при z > 15 м.

Если имеются данные измерений высотного изменения ветра, то его можно представить в полиномиальном виде:

VZ = YZ0 + A z + B z2 + C z3 + D z4+…,

причем интерполяционные коэффициенты А, В, С, D — должны быть заданы.

Изменение скорости ветра в пространственно-неоднородном потоке можно описать следующей формулой:

Отрицательные значения угла при росте высотной координаты свидетельствует о том, что поворот потока происходит вправо (то есть против часовой стрелки). Поворот вектора скорости V∞z  происходит от высоты zf, на которой он равен V∞f и направлен вдоль оси X.

Рассмотрим конкретный пример вычисления по записанной выше формуле направления и скорости ветра на высоте z =1000 м. Вычисляем изменения угла ветрового потока

θ (z =1000 м) = 0.41 рад = 0,41х 57,3 град. = 23,5 град.

Увеличение абсолютного значения скорости ветра вдоль оси X при этом составляет

n = V∞z /V∞f = (1000/2)02 cos 23,5 0 = 2,82 х 0,916= 2,58.

Перейти на страницу:

Похожие книги