При свободном растекании диаметр разлития определяется из соотношения:
где d — диаметр разлития, м; V — объем жидкости, м3.
Величина теплового потока q на заданном расстоянии х от горящего разлития определяется по формуле:
q = 0,8Q0 e−0,33x , (2.35)
где Q0 — тепловой поток на поверхности факела, кВт/м2, значения которого для некоторых веществ приведены в Таблице 2.3,
х — расстояние до фронта пламени, м.
Расстояние х, на котором будет наблюдаться тепловой поток с заданной величиной q, определяется по формуле:
x 33 ln(0,8 Q 0/ q) =. (2.36)
Величина индекса дозы теплового излучения I определяется из соотношения:
I = 60 q4/3, (2.37)
Возможность воспламенения различных материалов представлена в Таблице 2.4 При величине теплового потока более 85 кВт/м2 воспламенение происходит через 3–5 с.
Таблица № 2.3.
Тепловой поток на поверхности факела от горящих разлитий.
Таблица № 2.4.
Тепловые потоки, вызывающие воспламенения некоторых материалов.
Методика расчета характеристик горения, предложенная в работе [106], включает следующие основные предположения и эмпирические соотношения.
1. Горение рассматривается как диффузионное (т. е. непосредственно зависящее от режима эжекции воздуха в зону горения) и происходит с открытой поверхности (в самом резервуаре при срыве перекрытия или при разлитии в пределах защитного ограждения).
2. Высота (длина — L) видимой части пламени (излучающей определенную долю тепла) определяется гидродинамическими факторами и наиболее достоверно может быть рассчитана по эмпирической формуле Томаса [116] с учетом влияния ветра на скорость сгорания, а следовательно, и на длину пламени
где m — массовая скорость выгорания с поверхности, кг · м -2 · с-1;
ра — плотность воздуха, кгкм-3;
D — эквивалентный диаметр очага горения, м;
W0 — скорость ветра, мкс-1;
рπ — плотность паров топлива при температуре поверхности раздела фаз (для кипящих сжиженных газов — температура кипения при атмосферном давлении), кг/м3.
Эмпирические коэффициенты в формулах Томаса (а1 = 55; = 0,67; с1 = -0,21) получены по результатам экспериментов, выполненных для широкого диапазона параметров
применительно к самым различным горючим жидкостям и сжиженным газам.
3. Пламя рассматривается как оптически «серый» монохроматический поверхностный излучатель.
4. При расчете внешнего излучения сложная, изменяющаяся во времени геометрическая форма пламени рассматривается как цилиндрическая поверхность с сохранением реальных значений высоты и (эквивалентного) диаметра основания пламени.
Количество теплоты q, излучаемое факелом в направлении смежного объекта или сооружения [114], рассчитывается по формуле
q = I0 ехр(-βг)ΦFΦ /(πг2), (2.40)
где I0 — интенсивность излучения факела, Вт/м2;
Р — коэффициент ослабления среды, м1;
г — расстояние от излучающей поверхности до облучаемого объекта, м;
FΦ— площадь излучающей поверхности в направлении смежного объекта, м2;
Φ — коэффициент облученности.
Интенсивность излучающей поверхности факела определяют по закону Стефана — Больцмана. Эта величина сильно зависит от температуры пламени, т. к. теплоизлучение пропорционально температуре в четвертой степени.
Для определения критических расстояний между очагом пожара и окружающими объектами необходимо знать площадь поверхности факела, обращенного в сторону облучаемой поверхности, степень черноты факела, коэффициент облученности, температуру факела, среднюю скорость сгорания материалов, а также критические тепловые потоки.
В Таблице № 2.5 с учетом различных режимов горения приведены значения критических тепловых потоков для некоторых горючих материалов.
Отметим, что площадь поверхности факела, обращенного в сторону облучаемого объекта, приближенно определяют как произведение основания факела на его высоту, делая поправку на форму (очертание) поверхности.
б) Расчет параметров пожара при возникновении огневого шара [106].
Возникновение огневого шара характеризуется совокупностью таких физических процессов, как:
Таблица № 2.5.
Критические тепловые потоки, вызывающие воспламенение и самовоспламенение некоторых материалов.
— взрывное вскипание углеводородных жидкостей в резервуарах высокого давления;
— выброс содержимого резервуара в окружающее пространство с образованием быстро сгорающего аэрозольного облака (огневого шара) и ударной волны;
— разрушение сосуда и разлет его осколков.
Для возникновения огневого шара необходимы следующие предпосылки:
1. жидкость, хранящаяся в герметичном сосуде под давлением, к моменту вскипания (за счет сброса давления) должна быть «термодинамически перегретой» выше некоторого характерного предела относительно состояния насыщения при атмосферном давлении;
2. в результате аварийной разгерметизации несущего корпуса (либо неправильной работы предохранительных клапанов или разрывных мембран) должно произойти резкое падение давления над поверхностью раздела жидкой и паровой фаз.
Тепловая мощность Р сгорания огневого шара [117] массой М может быть найдена из уравнения:
где QH — теплота сгорания, МДж/кг;
τ — время существования объекта, с.